Japanese Air Defense and the Cold War Origins of Air Defense Identification Zones

Air Defense Identification Zones (ADIZ) in the South China Sea [Maximilian Dörrbecker (Chumwa)/Creative Commons/Wikipedia]

My previous posts have discussed the Japanese Air Self Defense Force (JASDF) and the aircraft used to perform the Defensive Counter Air (DCA) mission. To accomplish this, the JASDF is supported by an extensive air defense system which closely mirrors U.S. Air Force (USAF) and U.S. Navy (USN) systems and has co-evolved as technology and threats have changed over time.

Japan’s integrated air defense network and the current challenges it faces are both rooted in the Cold War origins of the modern U.S. air defense network.

On June 25, 1950, North Korea launched an invasion of South Korea, drawing the United States into a war that would last for three years. Believing that the North Korean attack could represent the first phase of a Soviet-inspired general war, the Joint Chiefs of Staff ordered Air Force air defense forces to a special alert status. In the process of placing forces on heightened alert, the Air Force uncovered major weaknesses in the coordination of defensive units to defend the nation’s airspace. As a result, an air defense command and control structure began to develop and Air Defense Identification Zones (ADIZ) were staked out along the nation’s frontiers. With the establishment of ADIZ, unidentified aircraft approaching North American airspace would be interrogated by radio. If the radio interrogation failed to identify the aircraft, the Air Force launched interceptor aircraft to identify the intruder visually. In addition, the Air Force received Army cooperation. The commander of the Army’s Antiaircraft Artillery Command allowed the Air Force to take operational control of the gun batteries as part of a coordinated defense in the event of attack.

In addition to North America, the U.S. unilaterally declared ADIZs to protect Japan, South Korea, the Philippines, and Taiwan in 1950. This action had no explicit foundation in international law.

Under the Convention on International Civil Aviation (the Chicago Convention), each State has complete and exclusive sovereignty over the airspace above its territory. While national sovereignty cannot be delegated, the responsibility for the provision of air traffic services can be delegated.… [A] State which delegates to another State the responsibility for providing air traffic services within airspace over its territory does so without derogation of its sovereignty.

This precedent set the stage for China to unilaterally declare ADIZs its own in 2013 that overlap those of Japan in the East China Sea. China’s ADIZs have the same international legal validity as those of the U.S. and Japan, which has muted criticism of China’s actions by those countries.

Recent activity by the Chinese People’s Liberation Army Air Force (PLAAF) and nuclear and missile testing by the Democratic People’s Republic of Korea (DPRK, or North Korea) is prompting incremental upgrades and improvements to the Japanese air defense radar network.

In August 2018, six Chinese H-6 bombers passed between Okinawa’s main island and Miyako Island heading north to Kii Peninsula. “The activities by Chinese aircraft in surrounding areas of our country have become more active and expanding its area of operation,” the spokesman [of the Japanese Ministry of Defense] said.… “There were no units placed on the islands on the Pacific Ocean side, such as Ogasawara islands, which conducted monitoring of the area…and the area was without an air defense capability.”

Such actions by the PLAAF and People’s Liberation Army Navy (PLAN) have provided significant rationale in the Japanese decision to purchase the F-35B and retrofit their Izumo-class helicopter carriers to operate them, as the Pacific Ocean side of Japan is relatively less developed for air defense and airfields for land-based aircraft.

My next post will look at the development of the U.S. air defense network and its eventual integration with those of Japan and NATO

Abstraction and Aggregation in Wargame Modeling

[IPMS/USA Reviews]

“All models are wrong, some models are useful.” – George Box

Models, no matter what their subjects, must always be an imperfect copy of the original. The term “model” inherently has this connotation. If the subject is exact and precise, then it is a duplicate, a replica, a clone, or a copy, but not a “model.” The most common dimension to be compromised is generally size, or more literally the three spatial dimensions of length, width and height. A good example of this would be a scale model airplane, generally available in several ratios from the original, such as 1/144, 1/72 or 1/48 (which are interestingly all factors of 12 … there are also 1/100 for the more decimal-minded). These mean that the model airplane at 1/72 scale would be 72 times smaller … take the length, width and height measurements of the real item, and divide by 72 to get the model’s value.

If we take the real item’s weight and divide by 72, we would not expect our model to weight 72 times less! Not unless the same or similar materials would be used, certainly. Generally, the model has a different purpose than replicating the subject’s functionality. It is helping to model the subject’s qualities, or to mimic them in some useful way. In the case of the 1/72 plastic model airplane of the F-15J fighter, this might be replicating the sight of a real F-15J, to satisfy the desire of the youth to look at the F-15J and to imagine themselves taking flight. Or it might be for pilots at a flight school to mimic air combat with models instead of ha

The model aircraft is a simple physical object; once built, it does not change over time (unless you want to count dropping it and breaking it…). A real F-15J, however, is a dynamic physical object, which changes considerably over the course of its normal operation. It is loaded with fuel, ordnance, both of which have a huge effect on its weight, and thus its performance characteristics. Also, it may be occupied by different crew members, whose experience and skills may vary considerably. These qualities of the unit need to be taken into account, if the purpose of the model is to represent the aircraft. The classic example of this is a flight envelope model of an F-15A/C:


This flight envelope itself is a model, it represents the flight characteristics of the F-15 using two primary quantitative axes – altitude and speed (in numbers of mach), and also throttle setting. Perhaps the most interesting thing about this is the realization than an F-15 slows down as it descends. Are these particular qualities of an F-15 required to model air combat involving such and aircraft?

How to Apply This Modeling Process to a Wargame?

The purpose of the war game is to model or represent the possible outcome of a real combat situation, played forward in the model at whatever pace and scale the designer has intended.

As mentioned previously, my colleague and I are playing Asian Fleet, a war game that covers several types of naval combat, including those involving air units, surface units and submarine units. This was published in 2007, and updated in 2010. We’ve selected a scenario that has only air units on either side. The premise of this scenario is quite simple:

The Chinese air force, in trying to prevent the United States from intervening in a Taiwan invasion, will carry out an attack on the SDF as well as the US military base on Okinawa. Forces around Shanghai consisting of state-of-the-art fighter bombers and long-range attack aircraft have been placed for the invasion of Taiwan, and an attack on Okinawa would be carried out with a portion of these forces. [Asian Fleet Scenario Book]

Of course, this game is a model of reality. The infinite geospatial and temporal possibilities of space-time which is so familiar to us has been replaced by highly aggregated discreet buckets, such as turns that may last for a day, or eight hours. Latitude, longitude and altitude are replaced with a two-dimensional hexagonal “honey comb” surface. Hence, distance is no longer computed in miles or meters, but rather in “hexes”, each of which is about 50 nautical miles. Aircraft are effectively aloft, or on the ground, although a “high mission profile” will provide endurance benefits. Submarines are considered underwater, or may use “deep mode” attempting to hide from sonar searches.

Maneuver units are represented by “counters” or virtual chits to be moved about the map as play progresses. Their level of aggregation varies from large and powerful ships and subs represented individually, to smaller surface units and weaker subs grouped and represented by a single counter (a “flotilla”), to squadrons or regiments of aircraft represented by a single counter. Depending upon the nation and the military branch, this may be a few as 3-5 aircraft in a maritime patrol aircraft (MPA) detachment (“recon” in this game), to roughly 10-12 aircraft in a bomber unit, to 24 or even 72 aircraft in a fighter unit (“interceptor” in this game).

Enough Theory, What Happened?!

The Chinese Air Force mobilized their H6H bomber, escorted by large numbers of Flankers (J11 and Su-30MK2 fighters from the Shanghai area, and headed East towards Okinawa. The US Air Force F-15Cs supported by airborne warning and control system (AWACS) detected this inbound force and delayed engagement until their Japanese F-15J unit on combat air patrol (CAP) could support them, and then engaged the Chinese force about 50 miles from the AWACS orbits. In this game, air combat is broken down into two phases, long-range air to air (LRAA) combat (aka beyond visual range, BVR), and “regular” air combat, or within visual range (WVR) combat.

In BVR combat, only units marked as equipped with BVR capability may attack:

  • 2 x F-15C units have a factor of 32; scoring a hit in 5 out of 10 cases, or roughly 50%.
  • Su-30MK2 unit has a factor of 16; scoring a hit in 4 out of 10 cases, ~40%.

To these numbers a modifier of +2 exists when the attacker is supported by AWACS, so the odds to score a hit increase to roughly 70% for the F-15Cs … but in our example they miss, and the Chinese shot misses as well. Thus, the combat proceeds to WVR.

In WVR combat, each opposing side sums their aerial combat factors:

  • 2 x F-15C (32) + F-15J (13) = 45
  • Su-30MK2 (15) + J11 (13) + H6H (1) = 29

These two numbers are then expressed as a ratio, attacker-to-defender (45:29), and rounded down in favor of the defender (1:1), and then a ten-sided-die (d10) is rolled to consult the Air-to-Air Combat Results Table, on the “CAP/AWACS Interception” line. The die was rolled, and a result of “0/0r” was achieved, which basically says that neither side takes losses, but the defender is turned back from the mission (“r” being code for “return to base”). Given the +2 modifier for the AWACS, the worst outcome for the Allies would be a mutual return to base result (“0r/0r”). The best outcome would be inflicting two “steps” of damage, and sending the rest home (“0/2r”). A step of loss is about one half of an air unit, represented by flipping over the counter or chit, and operating with the combat factors at about half strength.

To sum this up, as the Allied commander, my conclusion was that the Americans were hung-over or asleep for this engagement.

I am encouraged by some similarities between this game and the fantastic detail that TDI has just posted about the DACM model, here and here. Thus, I plan to not only dissect this Asian Fleet game (VGAF), but also go a gap analysis between VGAF and DACM.

Assessing The Assessments Of The Military Balance In The China Seas

“If we maintain our faith in God, love of freedom, and superior global airpower, the future [of the US] looks good.” — U.S. Air Force General Curtis E. LeMay (Commander, U.S. Strategic Command, 1948-1957)

Curtis LeMay was involved in the formation of RAND Corporation after World War II. RAND created several models to measure the dynamics of the US-China military balance over time. Since 1996, this has been computed for two scenarios, differing by range from mainland China: one over Taiwan and the other over the Spratly Islands. The results of the model results for selected years can be seen in the graphic below.

The capabilities listed in the RAND study are interesting, notable in that the air superiority category, rough parity exists as of 2017. Also, the ability to attack air bases has given an advantage to the Chinese forces.

Investigating the methodology used does not yield any precise quantitative modeling examples, as would be expected in a rigorous academic effort, although there is some mention of statistics, simulation and historical examples.

The analysis presented here necessarily simplifies a great number of conflict characteristics. The emphasis throughout is on developing and assessing metrics in each area that provide a sense of the level of difficulty faced by each side in achieving its objectives. Apart from practical limitations, selectivity is driven largely by the desire to make the work transparent and replicable. Moreover, given the complexities and uncertainties in modern warfare, one could make the case that it is better to capture a handful of important dynamics than to present the illusion of comprehensiveness and precision. All that said, the analysis is grounded in recognized conclusions from a variety of historical sources on modern warfare, from the air war over Korea and Vietnam to the naval conflict in the Falklands and SAM hunting in Kosovo and Iraq. [Emphasis added].

We coded most of the scorecards (nine out of ten) using a five-color stoplight scheme to denote major or minor U.S. advantage, a competitive situation, or major or minor Chinese advantage. Advantage, in this case, means that one side is able to achieve its primary objectives in an operationally relevant time frame while the other side would have trouble in doing so. [Footnote] For example, even if the U.S. military could clear the skies of Chinese escort fighters with minimal friendly losses, the air superiority scorecard could be coded as “Chinese advantage” if the United States cannot prevail while the invasion hangs in the balance. If U.S. forces cannot move on to focus on destroying attacking strike and bomber aircraft, they cannot contribute to the larger mission of protecting Taiwan.

All of the dynamic modeling methodology (which involved a mix of statistical analysis, Monte Carlo simulation, and modified Lanchester equations) is publicly available and widely used by specialists at U.S. and foreign civilian and military universities.” [Emphasis added].

As TDI has contended before, the problem with using Lanchester’s equations is that, despite numerous efforts, no one has been able to demonstrate that they accurately represent real-world combat. So, even with statistics and simulation, how good are the results if they have relied on factors or force ratios with no relation to actual combat?

What about new capabilities?

As previously posted, the Kratos Mako Unmanned Combat Aerial Vehicle (UCAV), marketed as the “unmanned wingman,” has recently been cleared for export by the U.S. State Department. This vehicle is specifically oriented towards air-to-air combat, is stated to have unparalleled maneuverability, as it need not abide by limits imposed by human physiology. The Mako “offers fighter-like performance and is designed to function as a wingman to manned aircraft, as a force multiplier in contested airspace, or to be deployed independently or in groups of UASs. It is capable of carrying both weapons and sensor systems.” In addition, the Mako has the capability to be launched independently of a runway, as illustrated below. The price for these vehicles is three million each, dropping to two million each for an order of at least 100 units. Assuming a cost of $95 million for an F-35A, we can imagine a hypothetical combat scenario pitting two F-35As up against 100 of these Mako UCAVs in a drone swarm; a great example of the famous phrase, quantity has a quality all its own.

A battery of Kratos Aerial Target drone ready for take off. One of the advantages of the low-cost Kratos drones are their ability to get into the air quickly. [Kratos Defense]

How to evaluate the effects of these possible UCAV drone swarms?

In building up towards the analysis of all of these capabilities in the full theater, campaign level conflict, some supplemental wargaming may be useful. One game that takes a good shot at modeling these dynamics is Asian Fleet.  This is a part of the venerable Fleet Series, published by Victory Games, designed by Joseph Balkoski to model modern (that is Cold War) naval combat. This game system has been extended in recent years, originally by Command Magazine Japan, and then later by Technical Term Gaming Company.

Screenshot of Asian Fleet module by Bryan Taylor [vassalengine.org]

More to follow on how this game transpires!

TDI Friday Read: U.S. Airpower

[Image by Geopol Intelligence]

This weekend’s edition of TDI’s Friday Read is a collection of posts on the current state of U.S. airpower by guest contributor Geoffery Clark. The same factors changing the character of land warfare are changing the way conflict will be waged in the air. Clark’s posts highlight some of the way these changes are influencing current and future U.S. airpower plans and concepts.

F-22 vs. F-35: Thoughts On Fifth Generation Fighters

The F-35 Is Not A Fighter

U.S. Armed Forces Vision For Future Air Warfare

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

U.S. Marine Corps Concepts of Operation with the F-35B

The State of U.S. Air Force Air Power

Fifth Generation Deterrence


The F-35 Is Not A Fighter

I’ve been listening to Deputy Defense Secretary Robert Work speak on the Third Offset Strategy.  He spoke at Defense One Production forum (2015-09-30), and again to Air Command and Staff College students, (2016-05-27).  What follows are some rough notes and paraphrasing, aimed at understanding the strategy, and connecting the F-35 platform and its capabilities to the strategy.

Work gives an interesting description of his job as Chief Operating Officer (COO) of the Department of Defense (DOD), which is “one of the biggest corporations on the planet,” and having a “simple” mission, “to organize, train and equip a joint force that is ready for war and that is operated forward to preserve the peace.”

The Roots of the Third Offset Strategy

Why do we care about Third Offset?  “We have to deal with the resurgence of great power competition.”  What is a great power? Work credits John Mearsheimer’s definition, but in his own words, it is “a large state that can take on the dominant global state (the United States) and really give them a run for their money, and have a nuclear deterrent force that can survive a first strike. Don’t really care about economic power, or soft power, the focus is only on military capabilities.”

This is quite interesting, since economic power begets military capabilities.  A poor China and a rich China are worlds’ apart in terms of the military power that they can field.  Also, the stop and start nature of basing agreements with the Philippines under Duterte might remove key bases close to the South China Sea battlefield, having a huge impact on the ability of the US military to project power, as the RAND briefing from yesterday’s post illustrated in rather stark terms.

What has changed to require the Third Offset?  Great power rivals have duplicated our Second Offset strategy, of precision guided munitions, stealth and operational (campaign) level battle networks.  This strategy gave the US and allies an advantage for forty years.  “We’ve lived in a unique time in post-Wesphalian era, where one state is so dominant relative to its peers.”  He sees a dividing line in 2014, when two events occur:

  1. China starts to reclaim islands in the South China Sea
  2. Russia annexes Crimea and destabilizes Ukraine

Also, the nature of technology development has changed as well.  In the Cold War, technological innovation happens in government labs:

  • 1950’s – nuclear weapon miniaturization
  • 1960’s – space and rocket technology
  • 1970’s – precision guided munitions, stealth, information technology
  • 1980’s – large scale system of systems

From 2012, militarily-relevant technologies are happening in the commercial sphere:

  • Artificial Intelligence (AI)
  • Autonomous Weapons Systems
  • Robotics
  • Digitization
  • Fight from Range
  • Operate from inside their battle network
  • Cyber and EW, how to take down their network?

“This means we know where to start, but we don’t know where it ends.”  Of this list of technologies, he calls out AI and Autonomy as at the forefront.  He defines Autonomy as “the delegation of decision authority to some entity in the battle network. Manned or unmanned system … what you are looking for is human-machine symbiosis.

What do you need to do this?  First, deep-learning systems.  “Up until 2015, a human analyst was consistently more accurate at identifying an object in an image than a machine. In 2015, this changed. …  when a machine makes a mistake, it makes a big one.”  He then tells the story of a baby holding a baseball bat, “which the machine identified as an enemy armed combatant. … machines looked for patterns, and then provide them to humans who can use their intitive and strategic acuity to determine what’s going on.

The F-35 and Strategy

As an example of how this might play out, a machine can generate the Air Tasking Order (ATO – which is a large document that lists all of the sorties and targets to be prosecuted by joint air forces in a 24-hour period, per Wikipedia) … in minutes or hours, instead of many analysts working for hours or days. “We are after human-computer collaborative decision-making.” In 1997, super computer “Deep Blue” beat Gary Kasparov in chess, which was a big deal at the time. In 2005, however, two amateur chess players using three computers beat a field of grand masters and field of super computers. “It was the human strategic guidance combined with the tactical acuity of the computer that we believe will be the most important thing.”  He then goes on to highlight an example of this human-machine collaboration:

The F-35 is not a fighter plane. It shouldn’t even be called the F-35. It should be called the BN-35, the “Battle Network”-35. It is a human-machine collaboration machine that is unbelievable. The Distributed Aperture System (DAS), and all the sensors, and the network which pours into the plane; the plane processes it and displays it to the pilot, so that the pilot can make accurate, relevant and quick decisions. That’s why that airplane is going to be so good.

Work also covers another topic near and dear to me, wargaming.  Perhaps a war game is a great opportunity for humans and machines to practice collaboration?

We are reinvigorating wargaming, which has really gone down over the past years. We’re looking at more at the service level, more at the OSD level, and these are very, very helpful for us to develop innovative leaders, and also helpful for us to go after new and innovative concepts.

He mentions the Schriever Wargame. “[O]nce you start to move forces, your great power rival will start to use cyber to try to slow down those forces … the distinction between away games and home games is no longer relevant to us.”

Next, I’ll look at the perspectives of the services as they adopt the F-35 in different ways.


Hybrid Warfare At Sea

“Who are you calling junk?”

During his Senate confirmation hearing on January 11th, Secretary of State-designate Rex Tillerson stated that the Trump administration is “going to have to send China a clear signal that, first, the island-building [in the South China Sea] stops and, second, your access to those islands also is not going to be allowed.” Chinese state-run media outlets responded with vows to counter any attempts by the United States to block access to the artificial islands China is constructing in the South China Sea.

The possibility of a clash between the U.S. and China in the Western Pacific has been the subject of discussion and analysis for several years now. In the current issue of the U.S. Naval Institute’s journal, Proceedings, Admiral James Stavridis (ret.) takes a look at the potential challenges posed by maritime “hybrid warfare” capabilities. Noting that current assessments of hybrid war focus overwhelmingly on land warfare, he points out that both China and Iran have demonstrated the ability to apply asymmetrical approaches to sea warfare as well.

Stavridis outlines what a hybrid war at sea might look like.

Given its need to appear somewhat ambiguous to outside observers, maritime hybrid warfare generally will be conducted in the coastal waters of the littorals. Instead of using force directly from identifiable “gray hull” navy platforms, hybrid warfare will feature the use of both civilian vessels (tramp steamers, large fishing vessels, light coastal tankers, small fast craft, and even “low slow” skiffs with outboard engines). It also will be conducted and likely command-and-controlled from so-called white hulls assigned to the coast guards of given nations. Both the Chinese and the Iranians are using their coast guards (and revolutionary guards in the case of Iran) in this fashion in the South China Sea and Arabian Gulf, respectively.

Extrapolating from this, Stavridis argues that

The United States must start to consider its responses to hybrid warfare at sea, which may require developing new tactics and technologies, working closely with allies and partners, and building U.S. hybrid capability to counter its deployment by other nations and eventually transnational actors.

In addition, the United States should be considering the role of naval forces—Navy, Marine Corps, Coast Guard, and even Merchant Marine—in helping counter hybrid attacks ashore. Many of the capabilities developed to conduct and counter hybrid warfare at sea could be employed in the littoral, coastal regions, and eventually deep inland. This might be called “hybrid warfare from the sea,” and certainly is a potential part of maritime hybrid warfare.

He makes several specific recommendations:

  • “The most important thing we can do today is to study, analyze, and fully understand how the ideas of hybrid warfare as practiced today will both translate to the maritime sphere and develop there in lethal ways.”
  • Work with Coalition Partners and “encourage cross talk, exchange best practices, and share intelligence on this emerging concern.”
  • Train and exercise against maritime hybrid warfare. “The ambiguity of these scenarios will require education and training in rules of engagement, operating our conventional systems against unconventional forces at sea, and learning to act more like a network at sea in the littoral.”
  • Leverage the U.S. Coast Guard. “Involving it in a leadership role in combating maritime hybrid warfare is crucial. Many of its systems and platforms already contain the technologies to counter maritime hybrid warfare techniques, and its ethos and fighting spirit applied in this tactical arena would be powerful.”

The article goes into much more depth on these points. It is a good starting point for considering what a another potential area of future global competition may look like.