Drones And The U.S. Navy

An X-47 Unmanned Combat Air System (UCAS) drone lands on the USS Theodore Roosevelt during a test in 2014. [Breaking Defense]

Preamble & Warning (P&W): Please forgive me, this is an acronym heavy post.

In May 2013, the U.S. Navy (USN) reached milestones by having a “drone,” or unmanned aerial vehicle (UAV) land and take-off from an aircraft carrier. This was a significant achievement in aviation, and heralded an era of combat UAVs (UCAV) being integrated into carrier air wings (CVW). This vehicle, the X-47B, was built by Northrup Grumman, under the concept of a carrier-based stealthy strike vehicle.

Ultimately, after almost three years, their decision was announced:

On 1 February 2016, after many delays over whether the [Unmanned Carrier-Launched Airborne Surveillance and Strike] UCLASS would specialize in strike or intelligence, surveillance and reconnaissance (ISR) roles, it was reported that a significant portion of the UCLASS effort would be directed to produce a Super Hornet-sized carrier-based aerial refueling tanker as the Carrier-Based Aerial-Refueling System (CBARS), with ‘a little ISR’ and some capabilities for communications relay, and strike capabilities put off to a future version of the aircraft. In July 2016, it was officially named ‘MQ-25A Stingray’.

The USN, who had just proven that they can add a stealthy UCAV to carrier flight deck operations, decided to put this new capability on the shelf, and instead refocus the efforts of the aerospace defense industry on a brand new requirement, namely …

For mission tanking, the threshold requirement is offloading 14,000 lb. of fuel to aviation assets at 500 nm from the ship, thereby greatly extending the range of the carrier air wing, including the Lockheed Martin F-35C and Boeing F/A-18 Super Hornet. The UAV must also be able to integrate with the Nimitz-class carriers, being able to safely launch and recover and not take up more space than is allocated for storage, maintenance and repairs.

Boeing has fashioned part of St. Louis Lambert International Airport into an aircraft carrier deck, complete with a mock catapult system. [Boeing]

Why did they do this?

The Pentagon apparently made this program change in order to address the Navy’s expected fighter shortfall by directing funds to buy additional F/A-18E/F Super Hornets and accelerate purchases and development of the F-35C. Having the CBARS as the first carrier-based UAV provides a less complex bridge to the future F/A-XX, should it be an autonomous strike platform. It also addresses the carriers’ need for an organic refueling aircraft, proposed as a mission for the UCLASS since 2014, freeing up the 20–30 percent of Super Hornets performing the mission in a more capable and cost effective manner than modifying the F-35, V-22 Osprey, and E-2D Hawkeye, or bringing the retired S-3 Viking back into service.

Notice within this quote the supposition that the F/A-XX would be an autonomous strike platform. This program was originally a USN-specific program to build a next-generation platform to perform both strike and air superiority missions, much like the F/A-18 aircraft are “swing role.” The US Air Force (USAF) had a separate program for a next generation air superiority aircraft called the F-X. These programs were combined by the Department of Defense (DoD) into the Next Generation Air Dominance (NGAD) program. We can tell from the name of this program that it is clearly focused on the air superiority mission, as compared to the balance of strike and superiority, implicit in the USN program.

Senator John McCain, chairman of the Senate Armed Services Committee (SASC), wrote a letter to then Secretary of Defense Ash Carter, on 2015-03-24, stating, “I strongly believe that the Navy’s first operational unmanned combat aircraft must be capable of performing a broad range of missions in contested environments as part of the carrier air wing, including precision strike as well as [ISR].” This is effectively an endorsement of the X-47B, and quite unlike the MQ-25.

I’m in agreement with Senator McCain on this. I think that a great deal of experience could have been gained by continuing the development and test of the X-47B, and possibly deploying the vehicle to the fleet.

The Navy hinted at the possibility of using the UCLASS in air-to-air engagements as a ‘flying missile magazine’ to supplement the F/A-18 Super Hornet and F-35C Lightning II as a type of ‘robotic wingman.’ Its weapons bay could be filled with AIM-120 AMRAAMs and be remotely operated by an E-2D Hawkeye or F-35C flight leader, using their own sensors and human judgment to detect, track, and direct the UAV to engage an enemy aircraft. The Navy’s Naval Integrated Fire Control-Counter Air (NIFC-CA) concept gives a common picture of the battle space to multiple air platforms through data-links, where any aircraft could fire on a target in their range that is being tracked by any sensor, so the forward deployed UCLASS would have its missiles targeted by another controller. With manned-unmanned teaming for air combat, a dedicated unmanned supersonic fighter may not be developed, as the greater cost of high-thrust propulsion and an airframe of similar size to a manned fighter would deliver a platform with comparable operating costs and still without an ability to engage on its own.

Indeed, the German Luftwaffe has completed an air combat concept study, stating that the fighter of the 2040’s will be a “stealthy drone herder”:

Interestingly the twin-engine, twin-tail stealth design would be a twin-seat design, according to Alberto Gutierrez, Head of Eurofighter Programme, Airbus DS. The second crewmember may be especially important for the FCAS concept of operations, which would see it operate in a wider battle network, potentially as a command and control asset or UCAV/UAV mission commander.

Instead, the USN has decided to banish the drones into the tanker and light ISR roles, to focus on having more Super Hornets available, and move towards integrating the F-35C into the CVW. I believe that this is a missed opportunity to move ahead to get direct front line experience in operating UCAVs as part of combat carrier operations.

TDI Friday Read: Naval Air Power

A rare photograph of the current Russian Navy aircraft carrier Admiral Kuznetsov (ex-Riga, ex-Leonid Brezhnev, ex-Tblisi) alongside her unfinished sister, the now Chinese PLAN Liaoning (former Ukrainian Navy Varyag) in the Mykolaiv shipyards, Ukraine. [Pavel Nenashev/Pinterest]

Today’s edition of TDI Friday Read is a round-up of blog posts addressing various aspects of naval air power. The first set address Russian and Chinese aircraft carriers and recent carrier operations.

The Admiral Kuznetsov Adventure

Lives Of The Russian (And Ex-Russian) Aircraft Carriers

Chinese Carriers

Chinese Carriers II

The last pair of posts discuss aspects of future U.S. naval air power and the F-35.

U.S. Armed Forces Vision For Future Air Warfare

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

TDI Friday Read: U.S. Airpower

[Image by Geopol Intelligence]

This weekend’s edition of TDI’s Friday Read is a collection of posts on the current state of U.S. airpower by guest contributor Geoffery Clark. The same factors changing the character of land warfare are changing the way conflict will be waged in the air. Clark’s posts highlight some of the way these changes are influencing current and future U.S. airpower plans and concepts.

F-22 vs. F-35: Thoughts On Fifth Generation Fighters

The F-35 Is Not A Fighter

U.S. Armed Forces Vision For Future Air Warfare

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

U.S. Marine Corps Concepts of Operation with the F-35B

The State of U.S. Air Force Air Power

Fifth Generation Deterrence


Fifth Generation Deterrence

“Deterrence is the art of producing in the mind of the enemy… the FEAR to attack. And so, … the Doomsday machine is terrifying and simple to understand… and completely credible and convincing.” – Dr. Strangelove.

In a previous post, we looked at some aspects of the nuclear balance of power. In this Stpost, we will consider some aspects of conventional deterrence. Ironically, Chris Lawrence was cleaning out a box in his office (posted in this blog), which contained an important article for this debate, “The Case for More Effective, Less Expensive Weapons Systems: What ‘Quality Versus Quantity’ Issue?” by none other than Pierre M. Sprey, available here, published in 1982.

In comparing the F-15 and F-16, Sprey identifies four principal effectiveness characteristics that contribute to victory in air-to-air combat:

  1. Achieving surprise bounces and avoiding being surprised;
  2. Out-numbering the enemy in the air;
  3. Out-maneuvering the enemy to reach firing position (when surprise fails);
  4. Achieving reliable kills within the brief firing opportunities presented by combat.

“Surprise is the first because, in every air war since WWI, somewhere between 65% and 85% of all fighters shot down were unaware of their attacker.” Sprey mentions that the F-16 is superior to the F-15 due to the smaller size, and that fact that it smokes much less, both aspects that are clearly Within-Visual Range (WVR) combat considerations. Further, his discussion of Beyond Visual Range (BVR) combat is dismissive.

The F-15 has an apparently advantage inasmuch as it carries the Sparrow radar missile. On closer examination, this proves to be little or no advantage: in Vietnam, the Sparrow had a kill rate of .08 to .10, less that one third that of the AIM-9D/G — and the new models of the Sparrow do not appear to have corrected the major reasons for this disappointing performance; even worse, locking-on with the Sparrow destroys surprise because of the distinctive and powerful radar signature involved.

Sprey was right to criticize the performance of the early radar-guided missiles.  From “Trends in Air-to-Air Combat: Implications for Future Air Superiority,” page 10

From 1965 through 1968, during Operation Rolling Thunder, AIM-7 Sparrow missiles succeeded in downing their targets only 8 percent of the time and AIM-9 Sidewinders only 15 percent of the time. Pre-conflict testing indicated expected success rates of 71 and 65 percent respectively. Despite these problems, AAMs offered advantages over guns and accounted for the vast majority of U.S. air-to-air victories throughout the war.

Sprey seemed to miss out of the fact that the radar guided missile that supported BVR air combat was not something in the far distant future, but an evolution of radar and missile technology. Even in the 1980’s, the share of air-to-air combat victories by BVR missiles was on the rise, and since the 1990’s, it has become the most common way to shoot down an enemy aircraft.

In an Aviation Week podcast in July of this year, retired Marine Lt. Col. David Berke (also previously quoted in this blog), and Pierre Sprey debated the F-35. Therein, Sprey offers a formulaic definition of air power, as created by force and effectiveness, with force being a function of cost, reliability, and how often it can fly per day (sortie generation rate?). “To create air power, you have to put a bunch of airplanes in the sky over the enemy. You can’t do it with a tiny hand full, even if they are like unbelievably good. If you send six aircraft to China, they could care less what they are … F-22 deployments are now six aircraft.”

Berke counters with the ideas that he expressed before in his initial conversation with Aviation week (as analyzed in this blog), that information and situational awareness are by far the most important factor in aerial warfare. This stems from the advantage of surprise, which was Sprey’s first criteria in 1982, and remains a critical factor is warfare to this day. This reminds me a bit of Disraeli’s truism of “lies, damn lies and statistics”pick the metrics that tell your story, rather than objectively look at the data.

Critics beyond Mr. Sprey have said that high technology weapons like the F-22 and the F-35 are irrelevant for America’s wars; “the [F-22] was not relevant to the military’s operations in places like Iraq, Afghanistan and Libya — at least according to then-secretary of defense Robert Gates.” Indeed, according to the Washington Post, “Gates called the $65 billion fleet a ‘niche silver-bullet solution’ to a major aerial war threat that remains distant. … and has promised to urge President Obama to veto the military spending bill if the full Senate retains F-22 funding.”

The current conflict in Syria against ISIS, after the Russian deployment resulted in crowded and contested airspace, as evidenced by a NATO Turkish F-16 shoot down of a Russian Air Force Su-24 (wikipedia), and as reported on this blog. Indeed, ironically for Mr. Sprey’s analysis of the relative values of the AIM-9 vs the AIM-7 missiles, as again reported by this blog,

[T]he U.S. Navy F/A-18E Super Hornet locked onto a Su-22 Fitter at a range of 1.5 miles. It fired an AIM-9X heat-seeking Sidewinder missile at it. The Syrian pilot was able to send off flares to draw the missile away from the Su-22. The AIM-9X is not supposed to be so easily distracted. They had to shoot down the Su-22 with a radar guided AMRAAM missile.

For the record the AIM-7 was a direct technical predecessor of the AIM-120 AMRAAM. We can perhaps conclude that having more that one type of weapon is useful, especially as other air power nations are always trying to improve their counter measures, and this incident shows that they can do so effectively. Of course, more observations are necessary for statistical proof, but since air combat is so rare since the end of the Cold War, the opportunity to learn the lesson and improve the AIM-9X should not be squandered.

USAF Air Combat Dominance as Deterrent

Hence to fight and conquer in all your battles is not supreme excellence; supreme excellence consists in breaking the enemy’s resistance without fighting. – Sun Tzu

The admonition to win without fighting is indeed a timeless principle of warfare, and it is clearly illustrated through this report on the performance of the F-22 in the war against ISIS, over the crowded airspace in Syria, from Aviation Week on June 4th, 2017.  I’ve quoted at length, and applied emphasis.

Shell, a U.S. Air Force lieutenant colonel and Raptor squadron commander who spoke on the condition that Aviation Week identify him only by his call sign, and his squadron of stealth F-22 Lockheed Martin Raptors had a critical job to do: de-conflict coalition operations over Syria with an irate Russia.

… one of the most critical missions the F-22 conducts in the skies over Syria, particularly in the weeks following the April 6 Tomahawk strike, is de-confliction between coalition and non-coalition aircraft, says Shell. … the stealth F-22’s ability to evade detection gives it a unique advantage in getting non-coalition players to cooperate, says Shell. 

‘It is easier to bring air dominance to bear if you know where the other aircraft are that you are trying to influence, and they don’t know where you are,’ says Shell. ‘When other airplanes don’t know where you are, their sense of comfort goes down, so they have a tendency to comply more.

… U.S. and non-coalition aircraft were still communicating directly, over an internationally recognized, unsecure frequency often used for emergencies known as ‘Guard,’  says Shell. His F-22s acted as a kind of quarterback, using high-fidelity sensors to determine the positions of all the actors on the battlefield, directing non-coalition aircraft where to fly and asking them over the Guard frequency to move out of the way. 

The Raptors were able to fly in contested areas, in range of surface-to-air missile systems and fighters, without the non-coalition players knowing their exact positions, Shell says. This allowed them to establish air superiority—giving coalition forces freedom of movement in the air and on the ground—and a credible deterrent.

Far from being a silver bullet solution for a distant aerial war, America’s stealth fighters are providing credible deterrence on the front lines today. They have achieved in some cases, the ultimate goal of winning without fighting, by exploiting the advantage of surprise. The right question might be, how many are required for this mission, given the enormous costs of fifth generation fighters? (more on this later).  As a quarterback, the F-22 can support many allied units, as part of a larger team.

Giving credit where it is due, Mr. Sprey has rightly stated in his Aviation Week interview, “cost is part of the force you can bring to bear upon the enemy.”  His mechanism to compute air power in 2017, however, seems to ignore the most important aspect of air power since it first emerged in World War I, surprise.  His dogmatic focus on the lightweight, single purpose air-to-air fighter, which seems to shun even available, proven technology seems clear.

U.S. And China: Deterrence And Resolve Over North Korea

U.S. B-1 bombers overfly Korean Peninsula after North’s ICBM test, June 20th, 2017. [picture-alliance/AP Photo/Lee Jin-man]

While North Korea tests its inter-continental ballistic missiles (ICBM)s, the U.S. and China demonstrate their capabilities and resolve to use force, both nuclear and conventional. These shows of force seem to be ratcheting up, as the North Korean tests occur more frequently.  Flights of bombers and naval exercises are also complemented by words, sometimes quite strong words, such as those by the U.S. Pacific Fleet Commander, Admiral Scott Smith, who while speaking at the Australian National University’s security conference in late July, said,

Every member of the U.S. military has sworn an oath to defend the constitution of the United States against all enemies foreign and domestic and to obey the officers and the president of the United States as commander and chief appointed over us.

Asked by an academic in the audience whether he would make a nuclear attack on China next week if President Trump ordered it, Swift replied: “The answer would be: yes.”  These words are then reported in the press as “US admiral would ‘nuke China next week’ if Trump ordered it.” (South China Morning Post)  That kind of bombast is sensational, and intended to draw in readers. The reality of nuclear deterrence is that it has to be credible, meaning that the target nation must believe that nuclear weapons would be used if a certain line is crossed. This may make uncomfortable reading today, as Cold War memories are fading, but it has been reality since 1945.

[Photo deleted at the request of AFP]

China, meanwhile, has staged two different naval exercises in the Yellow Sea, likely organized to mark the People’s Liberation Army’s (PLA) 90th Anniversary on August 1st, 2017. It is ironic that naval exercises celebrate the Army’s anniversary, and that concurrently the PLA is shrinking relative to the Chinese Navy and Air Force. The PLA Army will likely take the brunt of the reduction, and the PLA Navy and Air Force are expected to increase in size,” according to Dr. David Finkelstein of the Center for Naval Analysis. Both the Navy, officially the People’s Liberation Army Navy (PLAN) and the Air Force, officially the People’s Liberation Army Air Force (PLAAF) are nominally part of the PLA.

It is also ironic that these naval exercises will close a portion of the maritime commons to commercial traffic, also known as Sea Lines of Communication (SLOC), articulated by Alfred Thayer Mahan, of the U.S. Naval War College.

The PLA Navy’s North Sea Fleet and the Shandong Maritime Safety Administration announced in the past two days that the central part of the Yellow Sea would be cordoned off to all marine traffic from Thursday for military purposes. An area of about 40,000 square kilometres off the coastal city of Qingdao, where the North Sea Fleet is headquartered, was expected to be affected by the drill, which would involve live ammunition, Weihai Evening Post reported on Wednesday. [Korea Times]

A US Marine Corps F-35B Lightning II VFMA 121 refuels using a KC-130J Hercules with VMGR 152 during Aviation Delivered Ground Refueling training at MCAS Iwakuni, Japan, on 11 April. The technique will increase the STOVL fighter’s ability to refuel in austere locations when other resources may not be available. [USMC]

The US Marine Corps (USMC) has deployed the F-35B to their forward operating base in Iwakuni Japan, and continues to innovate with their doctrine and Concepts Of Operation (CONOPS), as previously reported in this blog. This stealth strike fighter capability, on the relative doorstep of North Korea, and also relatively difficult to reprisal strikes from North Korea, seems to be one of the strongest deterrent forces.

More to follow on the on-going F-35 debate, as retired Marine Lt. Col. David Berke (also previously quoted in this blog), and Pierre Sprey go head to head on the topic in an Aviation Week podcast.

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

F-35C of Strike Fighter Squadron 101 (VFA-101) flies in formation with a Boeing F/A-18F Super Hornet of VFA-122 near Eglin Air Force Base, Florida (USA) on 22 June 2013. (USAF via Wikimedia)

The U.S. Navy (USN) and U.S. Air Force (USAF) are concerned about the ability to achieve and retain air superiority in future conflicts. In 2008, with the F-35 program underway, the USN issued a new requirement for an air superiority platform, the F/A-XX. The USAF, looking at its small fleet of F-22 Raptors–187 total, 125 combat-ready–and the status of the F-35 program, kicked off its own F-X program or Next-Generation Air Dominance (NGAD) in 2012.

In 2015, Frank Kendall, the Pentagon’s “acquisition czar” combined these two programs into Penetrating Counter-Air (PCA) to be run by the Defense Advanced Research Projects Agency (DARPA). This means that some basic requirements will need to be agreed upon, such as stealth or low-observable characteristics. The USN and USAF have some differing viewpoints on this particular topic.

USAF Air Combat Command (ACC) chief Gen. Herbert “Hawk” Carlisle says stealth will be “incredibly important” for the F-X aircraft that the USAF is pursuing as an eventual F-22 replacement. This viewpoint is reinforced by statements that the USAF’s fourth-generation fighters, F-14, F-15, F-16, and F-18, are “obsolete” even after upgrade, and “they simply will not survive” against the threats of the future, such as anti-access/area-denial (A2/AD) capabilities.

Meanwhile, USN Chief of Naval Operations Adm. Jonathan Greenert, has said that “stealth may be over-rated.” In a speech at the Office of Naval Research Naval Future Force Science and Technology Expo in Washington, D.C., Greenert said “I don’t want to necessarily say that it’s over, but let’s face it, if something moves fast through the air and disrupts molecules in the air and puts out heat–I don’t care how cool the engine can be–it’s going to be detectable.”

Aviation Week detailed these advances in counter-stealth capability, including both radars and Infra-Red Search and Track (IRST):

U.S. Air Force is the latest convert to the capabilities of IRST. The U.S. Navy’s IRST for the Super Hornet, installed in a modified centerline fuel tank, was approved for low-rate initial production in February, following 2014 tests of an engineering development model system, and the Block I version is due to reach initial operational capability in fiscal 2018. Block I uses the same Lockheed Martin infrared receiver—optics and front end—as is used on F-15Ks in Korea and F-15SGs in Singapore. This subsystem is, in turn, derived from the IRST that was designed in the 1980s for the F-14D. 

While the Pentagon’s director of operational test and engineering criticized the Navy system’s track quality, it has clearly impressed the Air Force enough to overcome its long lack of interest in IRST. The Air Force has also gained experience via its F-16 Aggressor units, which have been flying with IRST pods since 2013. The Navy plans to acquire only 60 Block I sensors, followed by 110 Block II systems with a new front end.

The bulk of Western IRST experience is held by Selex-ES, which is the lead contractor on the Typhoon’s Pirate IRST and the supplier of the Skyward-G for Gripen. In the past year, Selex has claimed openly that its IRSTs have been able to detect and track low-RCS targets at subsonic speeds, due to skin friction, heat radiating through the skin from the engine, and the exhaust plume.

Are Fourth and Fifth Generation Fighters Comparable?

Then on 21 December 2016, in the middle of this ongoing debate, president-elect Donald Trump tweeted: “Based on the tremendous cost and cost overruns of the Lockheed Martin F-35, I have asked Boeing to price-out a comparable F-18 Super Hornet!”

Many have asked, can an upgrade to a “legacy” fighter like the Super Hornet be comparable to a fifth-generation fighter like the F-35? Some have said that an advanced Super Hornet is an “Impossible Magic Fantasy Jet.” Others flatly state “No, Mr. Trump, You Can’t Replace F-35 With A ‘Comparable’ F-18.” More eloquently stated: “In this modern era of stealth combat, there are two kinds of fighters. Stealth fighters and targets.”

The manufacturers of the two aircraft mentioned in Trump’s tweet have been debating this topic over the past few years. In 2014, Boeing questioned the relative capabilities of the F-35C and the E/F-18G “Growler”, an electronic attack variant of the Super Hornet. “Stealth is perishable; only a Growler provides full spectrum protection.”

Indeed, that same year, Boeing developed an Advanced Super Hornet. The idea was basically to enclose the weapons that current Super Hornets sling beneath their wings into a low-observable pod and thus bring the overall radar cross section (RCS) i.e. the main metric of stealth, down to a level that would provide some of the penetration capability that a fifth generation fighter enjoys.

F/A-18 XT Block III Advanced Super Hornet [GlobalSecurity.org]

The current version of the advanced Super Hornet has “matured” after additional conversation with their primary customer, and low-observability has taken a less important role than range, payload, and battle-network capability. Indeed, Mr. Trump responded “We are looking seriously at a big order.”

For the USN, the F-35 seems to have evolved from a strike fighter into a platform for command, control, communications, computers, intelligence, reconnaissance and surveillance (C4ISR). This is an important role to play, undoubtedly, but it may mean fewer F-35Cs on carrier decks, which puts more money back into the pocket of the USN for other purposes.

Boeing’s sixth-generation fighter concept. Notable features are the optionality of the pilot, the lack of visibility from the cockpit which indicates some sort of “distributed aperture system” a la the F-35, and lack of a tail, which might limit air combat maneuverability. [Aviation Week]

Of course, Lockheed is not resting still – they’ve recently demonstrated a manned and unmanned teaming capability, working with the Air Force Research Laboratory.

What both companies and both services state publicly must be taken in the context of politics and business, as they are in constant competition, both with each other and potential opponents. This is a natural way to come up with good concepts, good options, and a good price.

More on autonomous capabilities to follow.

U.S. Marine Corps Concepts of Operation with the F-35B

Four F-35B Lightning II aircraft perform a flyover above the amphibious assault ship USS America (LHA 6) during the Lightning Carrier Proof of Concept Demonstration. [US Navy photo by Andy Wolfe]

The US Marine Corps (USMC) is practicing some new concepts of operation (CONOPS), using their new F-35B aircraft. The combination of a stealthy, Short-Take-Off-Vetical-Landing (STOVL) fighter with great sensors, with the aviation-centric configuration of the America Class vessels; the “Lightening Carrier (CV-L)” concept, and the flexible basing options from their CONOPS have some great potential to rapidly extend the power of the USMC ashore. “After fifteen years of emphasizing sustained operations ashore, the Marine Corps is refocusing on its naval and expeditionary roots and full-spectrum operations across the range of military operations (ROMO).”  (2017 Marine Aviation Plan)

The 21st century Marine Air Ground Task Force (MAGTF) conducts maneuver warfare in the physical and cognitive dimensions of conflict to generate and exploit psychological, technological, temporal, and spatial advantages over the adversary. The 21st century MAGTF executes maneuver warfare through a combined arms approach that embraces information warfare as indispensable for achieving complementary effects across five domains – air, land, sea, space, and cyberspace. The 21st century MAGTF avoids linear, sequential, and phased approaches to operations and blends maneuver warfare and combined arms to generate the combat power needed for simultaneity of action in its full range of missions. The 21st century MAGTF operates and fights at sea, from the sea, and ashore as an integrated part of the naval force and the larger combined/joint force. (emphasis added) (ibid)

The concepts laid out in the USMC document are:

  • Distributed Aviation Operations (DAO) – this is a plan to reduce predictability and operate from austere locations, “independent of specialized fixed infrastructure”
  • Distributed STOVL Operations (DSO) – similar to DSO, but with “[F]uel and ordnance resupply conducted at mobile forward arming and refueling points (M-FARPS) located closer or within the operating area.”
  • “Complementing…is the mobile distribution site (MDS) concept, a vehicle-mobile site located away from the M-FARP, intended to re-arm and re-fuel the M-FARP while maintaining an element of deception and decoy. DSO is sustainable using surface connectors, land-based MDSs and host nation support, enabling readiness and sortie generation for the MAGTF.”

We might never need to employ this way…but to not lean forward to develop this capability, to train and exercise with it, is to deny ourselves a force multiplier that highlights the agility and opportunity only the Navy-Marine Corps team can provide. (ibid)

How Do These USMC Lightening Carriers Compare?

The America Class amphibious assault ship, which at ~45,000 ton displacement is larger that the French nuclear carrier Charles De Gaulle (~42,000 tons), and approaching the size of the Russian and Chinese Kuznetsov class carriers (~55,000 tons), about the same size as the Indian modified Kiev class carrier (~45,000 tons), and bigger than the Japanese Izumo Class “helicopter destroyer” (~27,000 tons), which to a layman’s eyes is an aircraft carrier; even though these vessels operate only helicopters today, the capability to operate F-35B aircraft in the future is certainly exists. Of course the dominant carrier force is the US Navy’s Nimitz class, and newer Ford class (~100,000 tons), which  operate aircraft using Catapult-Assisted-Take-Off-But-Arrested-Recovery (CATOBAR). Interestingly, the British initially designed their Queen Elizabeth class carriers (~70,000 tons) to be CATOBAR, which gives the advantage of being able to launch heavier fighters (i.e. more weapons and fuel). A doubling of the estimated cost for CATOBAR forced a redesign back to a STOVL design back in 2012.

Are STOVL Aircraft Inherently Inferior?

This is an excellent question. The physical laws of nature have a vote here, because a STOVL aircraft must carry a smaller payload, than a CATOBAR aircraft, since it lacks the initial thrust provided by the catapult. David Axe of War is Boring has delivered a scathing account of the STOVL concept and history, (to again target the F-35). The USMC pursued STOVL technology, in spite of ” …crash-plagued experimentation throughout the early years of the jet age — every STOVL or V/STOL prototype from 1946 to 1966 crashed. “USMC interest in a working V/STOL attack aircraft outstripped the state of aeronautical technology.”

The British, meanwhile, concerned about Russian bomber and missile attacks on their airfields during the Cold War, developed the Harrier Jump Jet, which did not require a lengthy, fixed runway.

But the Harrier, so appealing in theory, has been a disaster in practice … In the 1991 Gulf War, the front-line concrete lily pads never showed up, so the jump jet had to fly from distant full-size bases or assault ships. With their very limited fuel, they were lucky to be able to put in five or 10 minutes supporting Marines on the ground — and they proved tremendously vulnerable to machine guns and shoulder-fired missiles.

Indeed, Mr. Axe quotes the infamous Pierre Sprey – “The Harrier was based on a complete lie.” (emphasis added).

Was The Harrier Really That Bad?  

Some claim that the Sea Harrier [is] the forgotten hero that won the war in the Falklands.  The US Air Force air chronicles states …

Harrier jump-jets performed well beyond the performance expectations of most military experts. The remarkable record of the aircraft is attributed not only to relatively sophisticated gadgetry, such as warning receivers and electronic countermeasures to confuse Argentine antiaircraft weapons, but also to the skilled British pilots…and the older Argentine planes…. In spite of its spectacular successes against British ships, Argentina lost the air-to-air war decisively. Argentine fighter aircraft failed to shoot down a single Harrier. British Harrier losses totaled nine–four to accidents and five by surface-based air defenses–surface-to-air missiles (SAMs) and antiaircraft artillery (AAA).

The USMC concepts specifically called out the ability to exploit spatial advantages, which also played a key roll in the Falklands:

The 400 miles from Argentina to the islands partially explained why the score was so lopsided. To make the 800-mile round trip from the Rio Gallegos Air Base on the coast severely strained the maximum operating range of the Argentine aircraft. Consequently, Argentine pilots had all they could do to reach the conflict area undetected and deliver their ordnance, “getting in and getting out” as quickly as possible.” (Ibid)

This geo-spatial situation is reminiscent of the Battle of Britain, where the RAF operated fighter aircraft nearby the battle location, while the Luftwaffe operated at the edge of their range, a limitation which was also widely credited as an important factor in the outcome.

The US Navy’s account of the Falklands War gave similar credit to the Harrier’s effectiveness:

[T]he Royal Navy was forced to go to war with only two short vertical takeoff and landing (STOVL) ships and their STOVL aircraft, the Harrier…. [T]hese units performed very well. It has been stated that had the British not had aircraft with the capabilities of the Harrier (STOVL, high reliability, and high availability) and the two small ships to operate them, it is unlikely the United Kingdom would have committed itself to hostilities in the South Atlantic…. Perhaps its greatest feature was surprising flexibility…. One of the best features of the Harrier was versatility in operating from a variety of platforms under actual combat conditions.

It is precisely this flexibility that STOVL aircraft—both the F-35B and the Harrier before it—which is leveraged in the USMC concepts. The F-35B has the added advantage that one of its key capabilities is the delivery of timely, accurate information. This information is delivered across the battle network at the speed of light, and weighs nothing, so the STOVL limitations do not apply in the same way. It seems clear that any evaluation of the F-35B’s capabilities need to consider these advantages, rather than focusing exclusively on metrics related to the Energy-Maneuverability Theory, such as wing loading, thrust to weight ratio.

U.S. Armed Forces Vision For Future Air Warfare

[Source: Naval Air Vision 2014-2025]

I’ve been reviewing the U.S. armed forces vision for how to fight and win with the F-35. It plays a pretty central role in each services’ vision documents, meaning that they have all adapted to the “top-down” strategic guidance given by the Department of Defense (DOD). But the interesting part is the differences between the services’ documents and statements.

How The Services View Their F-35s

Below are the U.S. armed forces I’ve focused on, and their current and future plans for the F-35. The table is from the FlightGlobal World Air Forces 2017 report.

Given the large numbers of aircraft going to training units, we can see that all forces are building their new pilot numbers, and according to Lt Col Berke (via an Aviation Week interview), they will put new pilots into F-35s, so they simply learn a fifth generation mindset from scratch, rather than having to “un-learn” the fourth generation mindset.

We can also see the U.S. Marine Corps building active combat units, in their relative haste to declare Initial Operational Capability (IOC) in July 2015, and in support of their first F-35B overseas deployment to Iwakuni Airbase, Japan in January 2017. This deployment location is a good way to support both possible confrontation sites in Korea and the East China Sea.

[Source: Forbes]

Another viewpoint exists on the U.S. military force posture in Asia that is essentially militaristic. The map image above is from a Forbes article, calling other US media “blind to the militarism of its own mentality and approach, as well as to the essential militarism of the U.S. alliance system in Asia, with its “cornerstone” of U.S. bases, including the headquarters and the Seventh Fleet, and some 100,000 force personnel in Japan and South Korea.” The Marine Corps is apparently quite keen to replace their ageing AV-8B and early model F/A-18A/B/C/D aircraft (as they have skipped out on the Super Hornet F/A-18E/F).

Meanwhile the U.S. Navy has articulated their vision in a document from Naval Air Systems Command (NAVAIR) entitled Naval Aviation Vision 2016-2025. They state:

The supersonic, multi-role, multi-service F-35 Lightning II represents a quantum leap in air superiority capability. Combining the next-generation fighter characteristics of radar-evading stealth, supersonic speed and fighter agility with the most powerful and comprehensive integrated sensor package of any fighter aircraft in history, the F-35 delivers unprecedented lethality and survivability to Naval Aviation [emphasis added].

Their characterization of the F-35 as an instrument of air superiority is perhaps a bit too optimistic, or stretches the F-35 capability a bit too much. In an assessment from the U.S. Naval War College of “Chinese Air Superiority in the Near Seas”, the F-35 does not stand out from the pack of Chinese and American fourth generation fighters, in the same way that the F-22 clearly does:

Indeed, while the U.S. Air Force has big plans for the F-35, it also offers some cautionary words about the force design and balance that the F-22 brings to the fight. According to Chief of U.S. Air Force Air Combat Command Gen. Michael Hostage in a February 2014 interview:

Dealing with the Joint Strike Fighter, Hostage says he is ‘going to fight to the death to protect the F-35’ since the only way to keep up with the adversaries, which ‘are building fleets that will overmatch our legacy fleet’, is by employing a sufficient fleet of 1,763 (‘not one less’) F-35s. You can update and upgrade the F-15 and F-16 fleets, but they would still become obsolete in the next decade.  But, the F-22 Raptor will have to support the F-35. And here comes another problem. When the Raptor was produced it was flying ‘with computers that were already so out of date you would not find them in a kid’s game console in somebody’s home gaming system.’ Still, the U.S. Air Force was forced to use the stealth fighter plane as it was, because that was the way the spec was written. But now, the F-22 must be upgraded through a costly service life extension plan and modernization program because, ‘If I do not keep that F-22 fleet viable, the F-35 fleet frankly will be irrelevant. The F-35 is not built as an air superiority platform. It needs the F-22,” says Hostage to Air Force Times.’ [emphasis added].

F-22 + F-35 = Air Superiority

[Source: 5th Generation Fighters, Lt Gen Hawk Carlisle, USAF ACC]

So, is the F-35 a capable air superiority platform, or not? General Hodges in 2014:

[E]xamine [the] Raptor versus the Lightning. A Raptor at 50-plus thousand feet at Mach 2 with its RCS has a different level of invulnerability than a Lightning at 35,000 at Mach .9 and it’s RCS.  The altitude, speed, and stealth combined in the two platforms, they give the airplanes two completely different levels of capability. The plan is to normalize the Lightning’s capability relative to the Raptor by marrying it up with six, or seven or eight other Lightening’s. The advanced fusion of the F-35 versus the F-22 means those airplanes have an equal level or better level of invulnerability than the Raptors have, but it takes multiple airplanes to do it because of the synergistic fused attacks of their weapon systems.  That’s the magic of the fifth-gen F-35, but it takes numbers of F-35s to get that effect. That’s why I’ve been so strident on getting the full buy. Because if they whittle it down to a little tiny fleet like the Raptor, it’s not going to be compelling.

In a separate interview in 2015, “Re-norming of Airpower in Practice: An F-22 enabled Air Combat Force,” General Hawk Carlisle made the point that

[T]he F-22 was a key enabler for the air combat force currently, and had led to a re-norming of airpower in practice … It’s not just that the F-22s are so good, it’s that they make every other plane better. They change the dynamic with respect to what the other airplanes are able to do because of what they can do with regard to speed, range, and flexibility. It’s their stealth quality. It’s their sensor fusion. It’s their deep penetration capability. It is the situational awareness they provide for the entire fleet which raises the level of the entire combat fleet to make everybody better.  The F-22s make the Eagles better, and the A-10s better, and the F-16s better. They make the bombers better. They provide information. They enable the entire fight. And its information dominance, its sensor fusion capability, it’s a situational awareness that they can provide to the entire package which raises the level of our capabilities in the entire fight. This is not about some distant future; it is about the current fight.

This point is nicely illustrated with the kind of cross domain information-sharing capability which embodies “joint-ness” and is demonstrated by F-22’s providing targeting data to submarines (SSGN) for land-attack cruise missiles.

General Carlisle also announced that “[t]he exercise coming up at Langley in December 2015 will feature the F-22 flying with the Typhoon (XI Squadron from the RAF) and the Rafales from the French Air Force. What these three aircraft have in come is that they all are about 10 years old in terms of combat experience and life.”

Perhaps these exercises were engineered to test improvements to the F-22’s combat capabilities, especially Within-Visual-Range (WVR), aptly named since the Mark 1 human eyeball becomes a sensor that stealth cannot fool. In May of 2015, the Raptor fired its first AIM-9X sidewinder, latest generation dogfight missiles. Along with a helmet-mounted sight, this capability was fielded by the Soviet Union in 1984, when the R-73 (AA-11 “Archer”) was mated to the MiG-29 Fulcrum. According to Lt. Col. Fred “Spanky” Clifton, who is one of the most experienced aggressor pilots ever, having flown the F-15, F-5, F-16 and the notorious MiG-29,  “[i]n the WVR (within visual range) arena, a skilled MiG-29 pilot can give and Eagle or Viper driver all he/she wants.”

The experience at Red Flag Alaska in 2012, a training exercise which saw the F-22 go up against Typhoons of the German Luftwaffe, was perhaps humbling for the Air Force to some degree, as the German pilots reported they had “Raptor salad for lunch,” and subsequently painted F-22 kills on their aircraft. This may have provided some impetus to deploy better capabilities; this year, Raptor pilots were happy to see the incremental update 3.2, which fielded the AIM-9X capability.

The 9X Block 1 version of the dual-use, infrared missile is “a dramatic leap within visual range missile capabilities,” said Lt. Col. Daniel, an F-22 pilot of the 95th Fighter Squadron at Tyndall Air Force Base in Florida. … with the AIM-9M ‘Mike’ we kind of went out there going, ‘We have six missiles,” Daniel joked, referring to the increased effort required to make the weapon effective in modern combat operations. ‘With AIM-9X, we step out the door going, ‘We got eight missiles on the jet.’

The helmet-mounted sight is due by 2020 for the F-22.

The Future of Air Superiority: BVR or WVR?

This seems clear, the F-22 dominates the fight from Beyond Visual Range (BVR), where its stealth and radar provide it the initiative and the ability to use the element of surprise in its favor. An analysis by Aviation Week, using publicly available data from system manufacturers, illustrates this quantitatively and graphically.

Large ‘fourth-generation’ fighters such as the F-15, Su-27 and Tornado have radar cross-sections (RCS) of 10-15 m2. The F-16 and “Gen-4.5” fighters—Typhoon, Rafale, Su-35 and Super Hornet—are believed to be in the 1-3-m2 range. The F-35 and F-22 RCSs are said to equal a golf ball and marble, respectively. Based on Sukhoi’s claims that its Su-35 can detect 3-m2 targets at 400 km in a narrow-angle, maximum-power search, Aviation Week estimated how far away it can detect these fighters. Note the detection range in a standard search is half as much. [Credit: Colin Throm/AW&ST]

Almaz-Antey says the S-400’s 92N6E “Gravestone” fire-control radar can detect a 4-m2 radar-cross-section target at 250 km. Based on this figure, Aviation Week estimated its detection range against modern fighter aircraft. [Credit: Colin Throm/AW&ST]

The F-35 should be able to use these same tactics, as it has those capabilities as well.  Once the fight devolves into WVR, even the Raptor, designed as an air superiority platform, finds challenges with capable fourth generation opponents. Should we expect the F-35 to fare better or worse than the F-22 in the same situation?

It seems this is one of the key questions in air-to-air combat modeling or war-gaming: how often are engagements taking place at BVR, and how often are they WVR? This is all the more challenging since “visual range” is a highly dynamic and situational.

The F-35 Is Not A Fighter

I’ve been listening to Deputy Defense Secretary Robert Work speak on the Third Offset Strategy.  He spoke at Defense One Production forum (2015-09-30), and again to Air Command and Staff College students, (2016-05-27).  What follows are some rough notes and paraphrasing, aimed at understanding the strategy, and connecting the F-35 platform and its capabilities to the strategy.

Work gives an interesting description of his job as Chief Operating Officer (COO) of the Department of Defense (DOD), which is “one of the biggest corporations on the planet,” and having a “simple” mission, “to organize, train and equip a joint force that is ready for war and that is operated forward to preserve the peace.”

The Roots of the Third Offset Strategy

Why do we care about Third Offset?  “We have to deal with the resurgence of great power competition.”  What is a great power? Work credits John Mearsheimer’s definition, but in his own words, it is “a large state that can take on the dominant global state (the United States) and really give them a run for their money, and have a nuclear deterrent force that can survive a first strike. Don’t really care about economic power, or soft power, the focus is only on military capabilities.”

This is quite interesting, since economic power begets military capabilities.  A poor China and a rich China are worlds’ apart in terms of the military power that they can field.  Also, the stop and start nature of basing agreements with the Philippines under Duterte might remove key bases close to the South China Sea battlefield, having a huge impact on the ability of the US military to project power, as the RAND briefing from yesterday’s post illustrated in rather stark terms.

What has changed to require the Third Offset?  Great power rivals have duplicated our Second Offset strategy, of precision guided munitions, stealth and operational (campaign) level battle networks.  This strategy gave the US and allies an advantage for forty years.  “We’ve lived in a unique time in post-Wesphalian era, where one state is so dominant relative to its peers.”  He sees a dividing line in 2014, when two events occur:

  1. China starts to reclaim islands in the South China Sea
  2. Russia annexes Crimea and destabilizes Ukraine

Also, the nature of technology development has changed as well.  In the Cold War, technological innovation happens in government labs:

  • 1950’s – nuclear weapon miniaturization
  • 1960’s – space and rocket technology
  • 1970’s – precision guided munitions, stealth, information technology
  • 1980’s – large scale system of systems

From 2012, militarily-relevant technologies are happening in the commercial sphere:

  • Artificial Intelligence (AI)
  • Autonomous Weapons Systems
  • Robotics
  • Digitization
  • Fight from Range
  • Operate from inside their battle network
  • Cyber and EW, how to take down their network?

“This means we know where to start, but we don’t know where it ends.”  Of this list of technologies, he calls out AI and Autonomy as at the forefront.  He defines Autonomy as “the delegation of decision authority to some entity in the battle network. Manned or unmanned system … what you are looking for is human-machine symbiosis.

What do you need to do this?  First, deep-learning systems.  “Up until 2015, a human analyst was consistently more accurate at identifying an object in an image than a machine. In 2015, this changed. …  when a machine makes a mistake, it makes a big one.”  He then tells the story of a baby holding a baseball bat, “which the machine identified as an enemy armed combatant. … machines looked for patterns, and then provide them to humans who can use their intitive and strategic acuity to determine what’s going on.

The F-35 and Strategy

As an example of how this might play out, a machine can generate the Air Tasking Order (ATO – which is a large document that lists all of the sorties and targets to be prosecuted by joint air forces in a 24-hour period, per Wikipedia) … in minutes or hours, instead of many analysts working for hours or days. “We are after human-computer collaborative decision-making.” In 1997, super computer “Deep Blue” beat Gary Kasparov in chess, which was a big deal at the time. In 2005, however, two amateur chess players using three computers beat a field of grand masters and field of super computers. “It was the human strategic guidance combined with the tactical acuity of the computer that we believe will be the most important thing.”  He then goes on to highlight an example of this human-machine collaboration:

The F-35 is not a fighter plane. It shouldn’t even be called the F-35. It should be called the BN-35, the “Battle Network”-35. It is a human-machine collaboration machine that is unbelievable. The Distributed Aperture System (DAS), and all the sensors, and the network which pours into the plane; the plane processes it and displays it to the pilot, so that the pilot can make accurate, relevant and quick decisions. That’s why that airplane is going to be so good.

Work also covers another topic near and dear to me, wargaming.  Perhaps a war game is a great opportunity for humans and machines to practice collaboration?

We are reinvigorating wargaming, which has really gone down over the past years. We’re looking at more at the service level, more at the OSD level, and these are very, very helpful for us to develop innovative leaders, and also helpful for us to go after new and innovative concepts.

He mentions the Schriever Wargame. “[O]nce you start to move forces, your great power rival will start to use cyber to try to slow down those forces … the distinction between away games and home games is no longer relevant to us.”

Next, I’ll look at the perspectives of the services as they adopt the F-35 in different ways.


F-22 vs. F-35: Thoughts On Fifth Generation Fighters

F-22 and F-35 [War on the Rocks]

[This is the first post from Geoffery Clark, a guest contributor to Mystics & Statistics. TDI is pleased to share his perspective and insights.]

This post begins a series on air warfare, how it has evolved, and where it is headed in the future. My goal is to highlight key facts that I believe are meaningful to help understand capabilities, both existing and emerging, and how they might play out in battle. Of course, I will also hypothesize, speculate from time to time, perhaps even downright evangelize. Those actions will obey the doctrine of separation of church and state. A good place to start a series on air warfare is the current state of the US Air Force (USAF) fighter programs, specifically the fifth generation F-35 and sibling F-22.

To disclose my own biases, I’ve been a skeptic of the F-35 aircraft for a long time, largely because my father worked on the F-22 program, and a certain amount of rivalry exists between these two programs. Often the F-35 capabilities have been compared to the F-22, as they are the first two fifth generation fighters into service with any air force. USAF Air Combat Command (ACC) has stated that anything that you can do in a Raptor (F-22) you can do with a Lightening (F-35), you just need more of them to do it. This has stoked the embers of those on the F-22 program, who saw their program end after several build curtailments, as prospects for export were squashed in congress; although production resumption bills spring up from time to time.

My personal opinion is that the F-22 advantages are fleeting, as all military advantage seems to be (“military secrets are the most fleeting of all.” ~ Spock, Star Trek, “The Enterprise Incident”), we should thus sell the Raptor to allies, dulling the stealth coatings to acceptable export levels, and using the opportunity to upgrade the Raptor’s avionics, sensors, cockpit and software (aka “real-time sensor fusion engine”, per Lt Col Berke, see below) to keep the platform optimized and relevant in the decades to come.

I’ve not been alone in my skepticism of the F-35; from War is Boring:
* ‘Your New Stealth Fighter is Really, Really Awful‘ (I bought this book for my Dad!)
* ‘The F-35 Stealth Fighter May Never Be Ready for Combat
* ‘Denmark’s F-35 Decision is Pretty Dumb
* ‘F’d: How the U.S. and Its Allies Got Stuck with the World’s Worst New Warplane

Perhaps most famously, the “Pacific View” briefing from RAND to the Royal Australian Air Force (RAAF) back in 2008, which was leaked and apparently caused a bit of embarrassment for RAND. This was widely reported by F-35 critics, echoing the lines in the report “F-35A is “Double Inferior” … can’t turn, can’t climb, can’t run.” (see attached slides, number 80). Dr. John Stillion, one of two listed authors, departed RAND, and is now at the Center for Strategic and Budgetary Assessments (CSBA), and has published some interesting viewpoints on future air warfare.

In the course of data collection and analysis, however, I’ve come to challenge my own bias, and consider the F-35 for what it is, what capabilities it brings to the field, and what that means for air warfare. What has caused this change of heart? More information about what the F-35 can do, for example, Aviation Week’s “Check Six” podcast, interview with Lt Col David Berke, USMC. Berke has flown both fourth generation fighters (F/A-18, F-16 “loves them”) and fifth generation fighters (F-22, F-35). Such first-hand evidence is essential to understand the capabilities of these aircraft as they develop in the hands of operators, whom he likens to app developers on the iPhone platform. They don’t ask “what can this plane do for me?”, rather “what can I do with this airplane?”

F-35 is in a world of its own, you’re talking about a level of awareness. Data is fused and presented, I can look at it and tell with a glance what’s happening, almost like watching a baseball game, I can see where everyone is. Then I can choose to drill into something, such as second base, and I can see what sensors are contributing, how confident those sensors are, see who else might be helping me out, constantly presented with information on the spectra, and thinking about which sensors are best to use in different situations. How can you best contribute to the development of this information? This is nothing like fourth gen platforms, which might have the link 16 network, but they did not fly around thinking ‘how can I better contribute to the link 16 network?’

Berke was quite candid about the state of the military networks, saying that “evolution of what this networking will allow us to do, we are in the infancy with this… those networks are in some ways yet to be created.” Indeed, USAF leadership is asking for help with technology; “fusing sensor data and communications from the land, sea, air, space and cyberspace will be key to the U.S. military’s success in future battlefields,” General David Goldfein said at the Air Force Association’s annual Air Warfare Symposium in Orlando Florida. “The victory in future conflict … will go to that leader who can command and control his or her forces to create multiple dilemmas from multiple domains … at a pace that would overwhelm any enemy on the planet while denying the enemy the ability to do the same.”

According to Berke, “the most precious commodity by a huge margin is data … situation awareness … information. The ability to make a more intelligent decision, earlier than your opponent, and do something smart with an airplane because you know what is going on around you.”

This reminds me of John Boyd’s famous OODA loop – Observe, Orient, Decide, Act.

More to come on this topic!