Scoring the KF51 Panther and the Future of the MBT

KF51 Panther. Image Credit: Industry Handout.

Another William (Chip) Sayers post. This is his fifth post here. He will be presenting at our Historical Analysis conference: Who’s Who at HAAC – part 1 | Mystics & Statistics (dupuyinstitute.org).

———————–William (Chip) Sayers——————

Scoring the KF51 Panther and the Future of the MBT


The German arms manufacturer Rheinmetall recently announced the rollout of their newest Main Battle Tank, the KF51 Panther. The new tank has captured the attention of the world largely because its main armament represents the first major improvement in that area in over 40 years, but also because — let’s be honest — the prospect of a new German Panther prowling the battlefields of Europe just sounds incredibly sexy.

Panther Ausf D number 435 of the 51st Panzer Battalion Kursk (source: World War Photos 2013-2022, contact: info(at)worldwarphptos.info).

While the Panther is not yet approved for large-scale production by the Bundeswehr — it is, in fact, an alternative to an ongoing Franco-German Leopard II/AMX-40 Le Clerc replacement program — the buzz created by the name alone may propel it to top of the list. Rheinmetall’s announcement make it clear that the major selling features center around its new 130mm gun and autoloader (reducing the crew size to three), integral HERO-120 reconnaissance/weapon UAS, a new, more powerful diesel power plant, an active protection system and integrated vehicle electronics.

When a major new weapons system like the Panther enters the scene, I immediately reach for my TNDM Operational Lethality Index (OLI) creation spreadsheet and see how it scores. First, because it may come in handy in future modeling, but also because going through the process and examining the outcome has a tendency to cut through my preconceptions and replace them with a more balanced perspective. So, I thought I was share my insights with this post.

In creating a score for a tank, the first thing one must do is define and score the weapons systems. This presents a couple of challenges in the case of the KF51. First, there is little publicly available data on the Rh-130 gun. It will obviously be more powerful than the Rh-120 on the Leopard II, but we need more specificity to create a reasonable score. By scouring everything available on the web, I found claims of an effective range of 4,000 meters. I could not find an exact number for muzzle velocity, but 2,000 m/sec seems to be within the range of most speculation and seems, if anything, comfortably conservative. These are the really important numbers, so the main gun looks reasonably accounted for.

However, another aspect of the Rh-130 is its autoloader. Rheinmetall apparently believes that handling 130mm rounds inside a turret is too difficult to be done efficiently by a human loader and has substituted a mechanical device that can load the gun more quickly and without tiring over time. The downside of the autoloader is its small “ready use” capacity of 20 rounds. The OLI of a gun is based on its hourly rate of fire, which means that barrel heating and wear, and human fatigue need to be accounted for — and, it must be said, such numbers are not easily found. Fortunately, graphs for rate of fire based on shell-size are provided if reliable information is unavailable. On the other hand, magazine capacity is not the primary determinator of rate of fire. The rules for building a gun score state that one should not consider logistics as a limitation. In other words, it is as though the gun is on the range with an unlimited amount of ammunition available. Thus, while limited magazine capacity may yield a negative modifier, it isn’t an absolute limiter.

More difficult to calculate is the HERO-120. Not only are hard numbers difficult to come by, the TNDM has difficulty coming to grips with this system. The HERO-120 can serve as a basic reconnaissance UAS, but the TNDM has no explicit reconnaissance function — the model assumes that a given force has its doctrinal recon means operating in a competent manner. If this isn’t the case for some reason, the penalty would be assessed as a decrement in that side’s Combat Effectiveness Value (troop quality) or a
CEV bonus to the opposing side.

There are several ways we can score the HERO-120: as an infantry weapon, an ATGM, an artillery weapon, or as an aircraft. There is no clear-cut answer to how its score it. The HERO-120 can be used as an anti-personnel/light-materiel weapon that could be considered a long-range mortar within the confines of the model. Scoring it this way, the HERO-120 has an impressive Operational Lethality Index (combat power score) of 792. This compares to an AKM assault rifle at .16, an M-2HB .50 cal heavy machinegun at 1.2, or an M-43 120mm mortar at an OLI of 145.

Scoring it as an ATGM yields an OLI of 257. This compares well with the Russian Konkurs (113), Kornet-E (175), US TOW-2B (136) and Javelin-C (246). This is primarily due to the HERO-120’s much greater range. Scored as an artillery system — much like an MRL rocket or SSM — the HERO-120 has an OLI of 782. This compares to the 227mm HIMARS MLRS at 338, or a Russian 9K720 Iskander SSM at 184. Compared to the basic HIMARS, HERO-120 has better range and is much more accurate. Its major advantages over the Iskander are its guidance system and its much smaller size that makes it handier to reload, giving it a higher volume of firepower.

The obvious course is to score it as a fixed-wing aircraft, but this is a bit trickier than it appears at first blush. The warhead must be scored as if it is a bomb or missile, then the UAS has to be scored as an aircraft carrying a single “bomb.” Both the “weapon” and the “aircraft” must have a range (in the case of the weapon) or a radius (in the case of the aircraft). For the weapon range, I estimated the range at which the UAS would lock-on to the target and begin to make its terminal dive. For the radius of the aircraft, I simply used the Line-of-Sight distance, which is approximately 40km. The UAS’ loiter time is one of its defining characteristics, but there’s no satisfactory way to handle it directly in the TNDM model. This will bear some exploration for the future. In the meantime, the Operational Lethality Index came to only 2.8 for the HERO-120 (approximately half the score of an under-rifle grenade launcher). By comparison, the MQ-1 Predator UAS has an OLI of 161, while a MQ-4 Reaper scores a 933 OLI. Clearly, this does not adequately reflect the contribution of this unique and versatile weapon. As the intent (aside from its reconnaissance function) is clearly as an antiarmor weapon, I decided to use the ATGM value for the HERO-120.

The TNDM makes provision for advanced composite or reactive armor, giving AFVs with these characteristics a 10% bump up compared to those with simple rolled homogenous armor. Active Protection Systems (APS) that actually intercept an incoming round before it hits the vehicle were not in widespread use. They should probably give a tank with RHA at least a 10% increase in value, but it is probably insufficient when coupled with advanced composite armor as used on the KF51. It is possible that the correct solution is to add 10% for each one of these characteristics, but this hasn’t been validated (to my knowledge) and therefore I give a maximum of 10% for advanced armor. It remains to be seen how well APS systems will hold up under actual combat conditions and given their complexity, they could underperform considerably. Therefore, I’m not overly concerned that we’re lowballing the Panther’s score by essentially ignoring this characteristic. If we get a large test case where APS work reliably, are not overwhelmed by multiple incoming shots and don’t prove to be far more danger than they are worth to their accompanying infantry, then we will have to revisit the subject.

Within the model, the Panther’s new power pack is measured by the speed it gives the vehicle and the fuel efficiency expressed in terms of combat radius. The numbers currently available turn out to be rather average for the type. It has been described as having a high power to weight ratio and this is generally a good thing. However, in the model vehicle weight translates directly to protection, thus a light-weight engine that doesn’t improve the speed or fuel efficiency of the vehicle is actually considered detrimental to protection. Given that many armored vehicles — the Israeli Merkava MBT being the outstanding example — incorporate the engine positioning as part of the protective package, it’s not too much of a stretch to justify the model’s view.

Advanced Vehicle Electronics (commonly known as “Vectronics”) are another unknown. Vectronics that merely provide the vehicle with, for example, improved night vision or allow the crew to be grouped into the hull for better protection is probably beneath the field of regard for the TNDM. However, networking vehicles with information-sharing technology must be addressed by the model, though it is probably best done as a modification to CEV.

In the 1970s, navies got into peer-to-peer information sharing, followed by air forces in the 1980s. This was a natural progression given the technical challenges involved. Land armies didn’t stick their toes in the water until the early 2000s, but the potential, if it can be made to reliably work under combat conditions, is profound. For thousands of years, the biggest fear and determinate of a commander’s actions was the necessity that he guess what was over the next hill. Just knowing with certainty where one’s own troops are, is a revolution in land warfare. Adding the enemy into this picture allows small, maneuverable forces to operate freely in enemy territory without fear of being caught and destroyed while maneuvering directly against enemy Centers of Gravity. In the September 1999 issue of Marine Corps Gazette, I wrote an article detailing how this kind of information could enable the USMC’s doctrine of Ship To Objective Maneuver could enable small, agile amphibious raids to execute their doctrine unencumbered by a large logistics tail.

With this in mind, it’s not so much the individual vehicle, but the entire force that exploits the information available. Therefore, it seems more fitting to adjust the unit’s CEV than to give a higher score to a vehicle whose crew might, or might not, be able to properly exploit the possibilities resident in the enhanced C3I equipment carried aboard the tank. A crew might not be properly trained or the force might be depleted to the point that the big picture information either doesn’t exist, or cannot be exploited effectively by an insufficient force. Thus, CEV enhancement is the best way to handle this capability.

All told then, what do we have? The KF51 Panther scores in at an OLI of 836. Not bad, but compared to the Leopard 2A6 at 800, the M-1A2 at 712, the Challenger II at 685, or the T-14 Armata at 963, it is not particularly impressive — hardly a game-changer. So, what does it take to build a game-changer?

My first attempt to answer this question was simple: Let’s put a really big gun on the Panther and see what that does. I replaced the 130mm gun with the Russian 152mm 2A83, a possibility for arming a future T-14 Armata II. After adding a couple of MT of weight and degrading top speed by 2 km/hr, the “Tiger” scored out at an OLI of 1015 — an increase of nearly 20%. However, even this massive upgrade in firepower did not yield a score that would dominate the battlefield. It would merely make a four-tank platoon the equivalent of an older five-tank platoon in firepower. Useful, but hardly a game-changer.

Next, I popped the turret off the Panther to create a “Jagdpanther,” armed with long-range loitering munitions scored essentially as ATGMs. I posited an 8-cell box launcher for the Switchblade 600 with two sets of reloads aboard and dual controls for the weapons for the tank commander and gunner. The engagement sequence would go something like this: Off-board recon and intelligence would be fed to the vehicle via information sharing networks and targets for individual vehicles would be assigned. The gunner would launch up to 8 loitering munitions and send them to their respective engagement areas via GPS guidance. As the UAS approach the target area some 25 minutes and 80km away, the gunner launches a second salvo of 8 and he and the commander divide up final guidance of the UAS as they attack their assigned targets. By the end of an hour, 24 UAS have been launched with perhaps as many as 20 enemy targets hit per firing vehicle. With this kind of potential, the “Jagdpanther” has an OLI of 1196, some 30% higher than the Panther, but still not earth-shattering.

Finally, as raw firepower alone did not appear to have the potential to revolutionize the armored fighting vehicle, I decided to explore advantages in operational and strategic mobility. Taking the US Army’s Stryker ICV as a base vehicle, I created the “Puma” wheeled tank destroyer, using the Switchblade loitering munition as the primary weapon and the 40mm automatic grenade launcher as the secondary. While it is not possible to armor a wheeled vehicle to MBT standards, the creation of Active Protection Systems might substitute for a brute-force approach of hanging tons of extra steel and laminates on the sides. If APS are as good as their manufacturers suggest, a light-weight vehicle may be able to stand in the line of battle as well as a much heavier MBT. All that might be needed is armor to defeat heavy machineguns and artillery fragments, saving tons of weight and considerable volume within the hull. In the early 2000s, the US Army was developing a family of combat vehicles that used alternate, high-tech armor packages to allow for a much lighter vehicle. Unfortunately, the Army couldn’t think past a 120mm gun, which incurred certain weight penalties of its own. When the Army retreated from its gamble on high-tech armor, the entire program collapsed. However, the time may have come to try this evolutionary stream, again.

With two 8-box launchers, a full set of reloads carried inside and stations for four gunners, the “Puma” scores out at a 1483 OLI. Finally, we have a vehicle that doubles the score of many extant MBTs. Not exactly groundbreaking in itself, but in a deployable package that can move great distances quickly on their own wheels? This just might be the revolution we’re looking for.

Clearly, the “Puma’s” score is the TNDM talking according to what the model values. But it does bring up interesting questions. How much is operational mobility worth? Being able to rush from one battlefield to the next is obviously a valuable asset. What about strategic mobility? It does no good to have heavy tanks at home if it takes six months for them to get to the hot-spot of the week. And if Bell/Boeing delivers on the idea of a VTOL C-130 (an advanced, four rotor development of the MV-22 Osprey)? The combination could be devastating. In my Marine Corps Gazette article, I posited that the Marines should drop their M-1s and substitute a much more supportable vehicle somewhat like the “Puma.” 23 years later, the Marine Corps is restructuring, a move that will divest them of their M-1 tank battalions. The Corps’ reasoning is that they need to radically lighten up their forces to play hit and run in a potential conflict with China in the Pacific islands. Losing the tanks (along with some of their tube-artillery and other items) not only reduces the sheer weight of these massive vehicles, but more importantly, the huge weight of ammunition and fuel these gas-guzzlers consume.

All of which begs the question: is the TNDM declaring the era of the tank over? Is the dinosaur of the lumbering MBT going to sprout wings and evolve into something new and different?

Maybe. Much of the push back against the idea in the post-Operation DESERT STORM 1990s was the theory that MBTs are intimidating to potential troublemakers in peace operations. But in an era where anything appearing on CNN with a turret is called a tank, are 70 tons worth of armored behemoth truly necessary for intimidation purposes? It seemed a poor argument then, and even less convincing now. In 2003’s Operation IRAQI FREEDOM, Republican Guard armored formations were broken up by air and artillery before they came into contact with US ground units such that we never ran into an RG unit larger than a company. So, for the last 3 decades, major force-on-force actions featuring MBTs seemed to be a thing of the past. Then Russia invaded Ukraine.

The ambiguity brought by this latest conflict presents a challenge to those who would make easy pronouncements about the future of warfare. On the one hand, tanks and other armored vehicles are in widespread use across Ukraine. On the other, tanks are meeting wholesale destruction by a wide variety of means, including those wielded by individual infantrymen. Regardless of the long-term utility of the MBT, it is clear that it no longer owns the battlespace like it did four decades ago, and isn’t likely to reclaim that position by hanging more armor on its sides or mounting a larger gun.

Traditionally, armored vehicles have been judged on their balance between three factors: firepower, protection and mobility. With a range of around 4km, the 130mm Rh-130 allows the Panther to dominate an area of 158km2 though its penetrative power vs other tanks is only evolutionary and is threatened by the active protection capability the Panther, itself employs. By contrast, the “Puma’s” reach is over 63,000km2 [km squared] ! As a top-attack system, the Switchblade will overmatch any top armor currently conceivable and is far less vulnerable to reactive armor and active protection systems as it adds the third dimension to the problem. The Panther carries 20 rounds in its autoloader, while the “Puma” has 32 rounds of ready ammo. It’s difficult to see how the traditional MBT wins the point for firepower.

While the Panther’s base armor greatly outperforms the “Puma’s,” it is, like all MBTs, vulnerable from the top, sides and rear where its armor is substantially thinner. Therefore, both vehicles would be significantly dependent on their APS, which does not necessarily depend on base armor to work. Perhaps more important, if it comes down to evading high-velocity gunfire from opposing MBTs, the “Puma” has significantly higher speed on the battlefield and potentially a lower profile for the enemy to shoot at. All things being equal, the combination of thick base armor and an APS is superior to thin base armor and an APS. Except, of course, for cost and the waste of resources if the APS is sufficient to defeat enemy attacks by itself. In the meantime, it carries a huge penalty to mobility at every level. The points for protection are then ambiguous.

As for mobility, a US Army Cold War era study estimated that tracks increase the terrain a vehicle can negotiate by only (if I recall correctly) about 5%. In the meantime, wheeled vehicles are far superior in operational and strategic mobility. Add to that the weight of an MBT vs. that of what is essentially an armored personnel carrier and there is no scenario where the Panther has an advantage at the operational or strategic level, and precious few where it may outperform the conceptual “Puma” on the tactical battlefield.

With one point clearly going to the wheeled vehicle, another strongly leaning that way, and the third a question mark, there is only one question left to us: Why are we playing with expensive and sluggish dinosaurs when we could be flooding the battlefield with ferocious stalking cats?

This entry was posted in Conventional warfare, Modeling, Simulation & Wargaming, TNDM by Christopher A. Lawrence. Bookmark the permalink.

About Christopher A. Lawrence

Christopher A. Lawrence is a professional historian and military analyst. He is the Executive Director and President of The Dupuy Institute, an organization dedicated to scholarly research and objective analysis of historical data related to armed conflict and the resolution of armed conflict. The Dupuy Institute provides independent, historically-based analyses of lessons learned from modern military experience. ... Mr. Lawrence was the program manager for the Ardennes Campaign Simulation Data Base, the Kursk Data Base, the Modern Insurgency Spread Sheets and for a number of other smaller combat data bases. He has participated in casualty estimation studies (including estimates for Bosnia and Iraq) and studies of air campaign modeling, enemy prisoner of war capture rates, medium weight armor, urban warfare, situational awareness, counterinsurgency and other subjects for the U.S. Army, the Defense Department, the Joint Staff and the U.S. Air Force. He has also directed a number of studies related to the military impact of banning antipersonnel mines for the Joint Staff, Los Alamos National Laboratories and the Vietnam Veterans of American Foundation. ... His published works include papers and monographs for the Congressional Office of Technology Assessment and the Vietnam Veterans of American Foundation, in addition to over 40 articles written for limited-distribution newsletters and over 60 analytical reports prepared for the Defense Department. He is the author of Kursk: The Battle of Prokhorovka (Aberdeen Books, Sheridan, CO., 2015), America’s Modern Wars: Understanding Iraq, Afghanistan and Vietnam (Casemate Publishers, Philadelphia & Oxford, 2015), War by Numbers: Understanding Conventional Combat (Potomac Books, Lincoln, NE., 2017) , The Battle of Prokhorovka (Stackpole Books, Guilford, CT., 2019), The Battle for Kyiv (Frontline Books, Yorkshire, UK, 2023), Aces at Kursk (Air World, Yorkshire, UK, 2024), Hunting Falcon: The Story of WWI German Ace Hans-Joachim Buddecke (Air World, Yorkshire, UK, 2024) and The Siege of Mariupol (Frontline Books, Yorkshire, UK, 2024). ... Mr. Lawrence lives in northern Virginia, near Washington, D.C., with his wife and son.

14 thoughts on “Scoring the KF51 Panther and the Future of the MBT

  1. If there is one thing I have learned from assessing the combat value of a weapon system is that paper characteristics and anecdotes are worthless for the task.

    With that said, it does not seem that the KF51 brings anything revolutionary to the field (neither did the Armata), conceptually. Opportunity and politics seem to drive the development.
    Experimental solutions which are rehashed experience a renaissance under maturity, incorporated in future platforms, also commonly observed in an arms race (see TTB).

    As for mobility, a US Army Cold War era study estimated that tracks increase the terrain a vehicle can negotiate by only (if I recall correctly) about 5%.

    Only for certain terrain and specific vehicles.
    Basically, an increase in pressure diminishes tyre deflection and reduces the overall contact area under repetitive loading, translating into limited thrust and the ability to overcome resistance (e.g. in high moisture soil), as a consequence the vehicle will start to sink in.

    • “Opportunity and politics seem to drive the development.”

      Yes. And? Watch and read the stuff produced by Rolf Hilmes. He adds the requirement for better gun if you want to kill a modern Russian tank head on. Politics actually slowed the development down in Germany.

      More interesting is what did kill the US developments? What is the plan in case of the M1?

    • The study took all that and more into account and concluded that, of the area of the earth’s surface accessible to a tracked armored vehicle, a wheeled alternative vehicle would be able to access 95% of that. I could be misremembering slightly, but the difference was surprisingly small. I had previously believed tracked vehicles had a great advantage, but after reading that report, I immediately began to question the wisdom of trading operational and strategic mobility for the maintenance headaches tracks bring with them in order to access a tiny fraction more of the earth’s surface.

      Could you be more specific about “anecdotal evidence?” I agree strongly, but I’m not sure where you believe I incorporated it.

      • That was a general statement. For instance, many historians tend to rely on paper characteristics or anecdotes when evaluating WW2 equipment, which rarely reflected reality.
        Correction modifiers and different testing environments and standards have to be taken into consideration. The listed speed in an article is nigh to useless without the proper context or a cross-country analysis. This also applies to primary, secondary and tertiary systems, ballistics (and computers), projectile design, metallurgical quality, optics, layout etc. In the absence of data, calculations have to be made.

        • “Correction modifiers and different testing environments and standards have to be taken into consideration. The listed speed in an article is nigh to useless without the proper context or a cross-country analysis. …”

          That is correct and will not change in the next few years I bet. However one can already derive some interesting conclusions:

          1) The commander and a gunner are still IN the turret, Rheinmetall obviously hopes that the better situational awareness compensates for the lack of a special crew compartment.

          2) It is still a four men crew with the fourth men able to operate some systems, this reduces the burden of the tank commander and offers capacity for future systems.

          3) The engine is still a (very modern) diesel.

          1) + 2) run against the stuff we see in the T-14. This means these features are not considered important in a more German context (less likely IMHO) or Rheinmetalll actually hopes that their turret may be the interesting product and could be fitted on existing underbodies.

  2. “While the Panther is not yet approved for large-scale production by the Bundesheer —”

    Nitpicking: Bundesheer is the Austrian army.
    Heer is the German army. Bundeswehr is the German armed forces. 🙂

    “Rheinmetall apparently believes that handling 130mm rounds inside a turret is too difficult to be done efficiently by a human loader”

    That is quite common opinion in Germany. Watch the talks of Rolf Hilmes, most likely the best you can get on German tanks.

    “It will obviously be more powerful than the Rh-120 on the Leopard II, but we need more specificity to create a reasonable score.”

    https://de.wikipedia.org/wiki/Rheinmetall_130-mm-Glattrohrkanone_L/51

    The kinetic energy of a round is around 20 MJ at the end of the barrel.

    In comparison, the long 120 mm (L55) has 13 MJ, the “short” 120 mm (L44) has 9.7 MJ

    IMHO the own development of a new MTB was a smart move by Rheinmetall, they are much faster allone than as part of the cooperation with Nexter and offer not only an export version but also a useful backup if the cooperation fails.

  3. W (Chip) S: “So, what does it take to build a game-changer?”

    Laser range finders and ballistic computers are nice, but what about the long range accuracy improvement that would come from an AP or HE guided projectile, something like Copperhead, but for a tank gun?

    I’m not aware of such a thing, but since we’re just making things up… 😉

    • The Russian through-the-tube ATGMs, the Israeli LAHAT and other, similar rounds would qualify — at least, that’s how the model sees them.

      • Yeah, but ATGMs (throw in the old Shillelagh missile) are have a relatively slow fire to impact, and can be outmaneuvered. I’m thinking of something with the velocity of a gun, say, a muzzle velocity of 4000′ – 5,000′ per second, but with the guidance of an ATGM.

  4. <>

    Doesn’t this statement have to take into account the strategic orientation and doctrine of the respective army (country)?

    Russia’s conventional warfare with main focus on artillery and destruction of all infrastructure, will certainly give a tank brigade much more importance than mobile, fast troops.

    Russia’s strategy prioritizes tanks and artillery over everything else.

    • That’s a fair comment. However, as long as they can get the guns within range of a city, I’m not sure they need tank brigades to provide security. That seems a violation of Soviet/Russian doctrine, which prefers to use tanks offensively.

  5. The “mobility” issue really isn’t straightforward enough to give a +/- number.

    You can find some pretty good discussions when dealing with construction vehicles which have many types that come both ways. And are used so frequently that there isn’t much possibility of their being just a legacy bias toward one solution.

    To my mind the tracked platform being more stable would be extremely important. That wheeled vehicles don’t tear up your terrain so badly is also important, but not as important as it often would be in construction.

    https://www.macallisterrentals.com/track-vs-wheeled-equipment-type-machine-rent/

Leave a Reply

Your email address will not be published. Required fields are marked *