Dupuy’s Verities: The Power Of Defense

Leonidas at Thermopylae, by Jacques-Louis David, 1814. [Wikimedia]

The second of Trevor Dupuy’s Timeless Verities of Combat is:

Defensive strength is greater than offensive strength.

From Understanding War (1987):

[Prussian military theorist, Carl von] Clausewitz expressed this: “Defense is the stronger form of combat.” It is possible to demonstrate by the qualitative comparison of many battles that Clausewitz is right and that posture has a multiplicative effect on the combat power of a military force that takes advantage of terrain and fortifications, whether hasty and rudimentary, or intricate and carefully prepared. There are many well-known examples of the need of an attacker for a preponderance of strength in order to carry the day against a well-placed and fortified defender. One has only to recall Thermopylae, the Alamo, Fredericksburg, Petersburg, and El Alamein to realize the advantage enjoyed by a defender with smaller forces, well placed, and well protected. [p. 2]

The advantages of fighting on the defensive and the benefits of cover and concealment in certain types of terrain have long been basic tenets in military thinking. Dupuy, however, considered defensive combat posture and defensive value of terrain not just to be additive, but combat power multipliers, or circumstantial variables of combat that when skillfully applied and exploited, the effects of which could increase the overall fighting capability of a military force.

The statement [that the defensive is the stronger form of combat] implies a comparison of relative strength. It is essentially scalar and thus ultimately quantitative. Clausewitz did not attempt to define the scale of his comparison. However, by following his conceptual approach it is possible to establish quantities for this comparison. Depending upon the extent to which the defender has had the time and capability to prepare for defensive combat, and depending also upon such considerations as the nature of the terrain which he is able to utilize for defense, my research tells me that the comparative strength of defense to offense can range from a factor with a minimum value of about 1.3 to maximum value of more than 3.0. [p. 26]

The values Dupuy established for posture and terrain based on historical combat experience were as follows:

For example, Dupuy calculated that mounting even a hasty defense in rolling, gentle terrain with some vegetation could increase a force’s combat power by more than 50%. This is a powerful effect, achievable without the addition of any extra combat capability.

It should be noted that these values are both descriptive, in terms of defining Dupuy’s theoretical conception of the circumstantial variables of combat, as well as factors specifically calculated for use in his combat models. Some of these factors have found their way into models and simulations produced by others and some U.S. military doctrinal publications, usually without attribution and shorn of explanatory context. (A good exploration of the relationship between the values Dupuy established for the circumstantial variables of combat and his combat models, and the pitfalls of applying them out of context can be found here.)

While the impact of terrain on combat is certainly an integral part of current U.S. Army thinking at all levels, and is constantly factored into combat planning and assessment, its doctrine does not explicitly acknowledge the classic Clausewitzian notion of a power disparity between the offense and defense. Nor are the effects of posture or terrain thought of as combat multipliers.

However, the Army does implicitly recognize the advantage of the defensive through its stubbornly persistent adherence to the so-called 3-1 rule of combat. Its version of this (which the U.S. Marine Corps also uses) is described in doctrinal publications as “historical minimum planning ratios,” which proscribe that a 3-1 advantage in numerical force ratio is necessary for an attacker to defeat a defender in a prepared or fortified position. Overcoming a defender in a hasty defense posture requires a 2.5-1 force ratio advantage. The force ratio advantages the Army considers necessary for decisive operations are even higher. While the 3-1 rule is a deeply problematic construct, the fact that is the only quantitative planning factor included in current doctrine reveals a healthy respect for the inherent power of the defensive.

Details Of U.S. Engagement With Russian Mercenaries In Syria Remain Murky

UNDISCLOSED LOCATION, SYRIA (May 15, 2017)— U.S. Marines fortify a machine gun pit around their M777-A2 Howitzer in Syria, May 15, 2017. The unit has been conducting 24-hour all-weather fire support for Coalition’s local partners, the Syrian Democratic Forces, as part of Combined Joint Task Force-Operation Inherent Resolve. CJTF-OIR is the global coalition to defeat ISIS in Iraq and Syria. (U.S. Marine Corps photo by Sgt. Matthew Callahan)

Last week, the New York Times published an article by Thomas Gibbons-Neff that provided a detailed account of the fighting between U.S-advised Kurdish and Syrian militia forces and Russian mercenaries and Syrian and Arab fighters near the city of Deir Ezzor in eastern Syria on 7 February 2018. Gibbons-Neff stated the account was based on newly obtained documents and interviews with U.S. military personnel.

While Gibbons-Neff’s reporting fills in some details about the action, it differs in some respects to previous reporting, particularly a detailed account by Christoph Reuter, based on interviews from participants and witnesses in Syria, published previously in Spiegel Online.

  • According to Gibbons-Neff, the U.S. observed a buildup of combat forces supporting the regime of Syrian President Bashar al Assad in Deir Ezzor, south of the Euphrates River, which separated them from U.S.-backed Kurdish and Free Syrian militia forces and U.S. Special Operations Forces (SOF) and U.S. Marine Corps elements providing advice and assistance north of the river.
  • The pro-regime forces included “some Syrian government soldiers and militias, but American military and intelligence officials have said a majority were private Russian paramilitary mercenaries — and most likely a part of the Wagner Group, a company often used by the Kremlin to carry out objectives that officials do not want to be connected to the Russian government.”
  • After obtaining assurances from the Russian military chain-of-command in Syria that the forces were not theirs, Secretary of Defense James Mattis ordered “for the force, then, to be annihilated.”
  • Gibbons-Neff’s account focuses on the fighting that took place on the night of 7-8 February in the vicinity of a U.S. combat outpost located near a Conoco gas plant north of the Euphrates. While the article mentions the presence of allied Kurdish and Syrian militia fighters, it implies that the target of the pro-regime force was the U.S. outpost. It does not specify exactly where the pro-regime forces concentrated or the direction they advanced.
  • This is in contrast to Reuter’s Spiegel Online account, which reported a more complex operation. This included an initial probe across a bridge northwest of the Conoco plant on the morning of 7 February by pro-regime forces that included no Russians, which was repelled by warning shots from American forces.
  • After dark that evening, this pro-regime force attempted to cross the Euphrates again across a bridge to the southeast of the Conoco plant at the same time another pro-regime force advanced along the north bank of the Euphrates toward the U.S./Kurdish/Syrian forces from the town of Tabiya, southeast of the Conoco plant. According to Reuter, U.S. forces engaged both of these pro-regime advances north of the Euphrates.
  • While the Spiegel Online article advanced the claim that Russian mercenary forces were not leading the pro-regime attacks and that the casualties they suffered were due to U.S. collateral fire, Gibbons-Neff’s account makes the case that the Russians comprised at least a substantial part of at least one of the forces advancing on the U.S./Kurdish/Syrian bases and encampments in Deir Ezzor.
  • Based on documents it obtained, the Times asserts that 200-300 “pro-regime” personnel were killed out of an overall force of 500. Gibbons-Neff did not attempt to parse out the Russian share of these, but did mention that accounts in Russian media have risen from four dead as initially reported, to later claims of “perhaps dozens” of killed and wounded. U.S. government sources continue to assert that most of the casualties were Russian.
  • It is this figure of 200-300 killed that I have both found problematic in the past. A total of 200-300 killed and wounded overall seems far more likely, with approximately 100 dead and 100-200 wounded out of the much larger overall force of Russian mercenaries, Syrian government troops, and tribal militia fighters involved in the fighting.

Motivation for the Operation Remains Unclear

While the details of the engagement remain ambiguous, the identity of those responsible for directing the attacks and the motivations for doing so are hazy as well. In late February, CNN and the Washington Post reported that U.S. intelligence had detected communications between Yevgeny Prigozhin—a Russian businessman with reported ties to President Vladimir Putin, the Ministry of Defense, and Russian mercenaries—and Russian and Syrian officials in the weeks leading up to the attack. One such intercept alleges that Prigozhin informed a Syrian official in January that he had secured permission from an unidentified Russian minister to move forward with a “fast and strong” initiative in Syria in early February.

Prigozhin was one of 13 individuals and three companies indicted by special counsel Robert Mueller on 16 February 2018 for funding and guiding a Russian government effort to interfere with the 2016 U.S. presidential election.

If the Deir Ezzor operation was indeed a clandestine operation sanctioned by the Russian government, the motivation remains mysterious. Gibbons-Neff’s account implies that the operation was a direct assault on a U.S. military position by a heavily-armed and equipped combat force, an action that all involved surely understood beforehand would provoke a U.S. military reaction. Even if the attack was instead aimed at taking the Conoco gas plant or forcing the Kurdish and Free Syrian forces out of Deir Ezzor, the attackers surely must have known the presence of U.S. military forces would elicit the same response.

Rueter’s account of a more complex operations suggests that the attack was a probe to test the U.S. response to armed action aimed at the U.S.’s Kurdish and Free Syrian proxy forces. If so, it was done very clumsily. The build-up of pro-regime forces telegraphed the effort in advance and the force itself seems to have been tailored for combat rather than reconnaissance. The fact that the U.S. government inquired with the Russian military leadership in Syria in advance about the provenance of the force build-up should have been a warning that any attempt at surprise had been compromised.

Whether the operation was simply intended to obtain a tactical advantage or to probe the resolution of U.S. involvement in Syria, the outcome bears all the hallmarks of a major miscalculation. Russian “hybrid warfare” tactics sustained a decisive reverse, while the effectiveness of U.S. military capabilities received a decided boost. Russian and U.S. forces and their proxies continue to spar using information operations, particularly electronic warfare, but they have not directly engaged each other since. The impact of this may be short-lived however, depending on whether or not U.S. President Donald J. Trump carries through with his intention announced in early April to withdraw U.S. forces from eastern Syria.

My Response To My 1997 Article

Shawn likes to post up on the blog old articles from The International TNDM Newsletter. The previous blog post was one such article I wrote in 1997 (he posted it under my name…although he put together the post). This is the first time I have read it since say….1997. A few comments:

  1. In fact, we did go back in systematically review and correct all the Italian engagements. This was primarily done by Richard Anderson from German records and UK records. All the UK engagements were revised as were many of the other Italian Campaign records. In fact, we ended up revising at least half of the WWII engagements in the Land Warfare Data Base (LWDB).
  2. We did greatly expand our collection of data, to over 1,200 engagements, including 752 in a division-level engagement database. Basically we doubled the size of the database (and placed it in Access).
  3. Using this more powerful data collection, I then re-shot the analysis of combat effectiveness. I did not use any modeling structure, but simply just used basic statistics. This effort again showed a performance difference in combat in Italy between the Germans, the Americans and the British. This is discussed in War by Numbers, pages 19-31.
  4. We did actually re-validate the TNDM. The results of this validation are published in War by Numbers, pages 299-324. They were separately validated at corps-level (WWII), division-level (WWII) and at Battalion-level (WWI, WWII and post-WWII).
  5. War by Numbers also includes a detailed discussion of differences in casualty reporting between nations (pages 202-205) and between services (pages 193-202).
  6. We have never done an analysis of the value of terrain using our larger more robust databases, although this is on my short-list of things to do. This is expected to be part of War by Numbers II, if I get around to writing it.
  7. We have done no significant re-design of the TNDM.

Anyhow, that is some of what we have been doing in the intervening 20 years since I wrote that article.

Response To “CEV Calculations in Italy, 1943”

German infantry defending against the allied landing at Anzio pass a damaged “Elefant” tank destroyer, March 1944. [Wikimedia/Bundesarchiv]

[The article below is reprinted from August 1997 edition of The International TNDM Newsletter. It was written in response to an article by Mr. Zetterling originally published in the June 1997 edition of The International TNDM Newsletter]

Response to Niklas Zetterling’s Article
by Christopher A. Lawrence

Mr. Zetterling is currently a professor at the Swedish War College and previously worked at the Swedish National Defense Research Establishment. As I have been having an ongoing dialogue with Prof. Zetterling on the Battle of Kursk, I have had the opportunity to witness his approach to researching historical data and the depth of research. I would recommend that all of our readers take a look at his recent article in the Journal of Slavic Military Studies entitled “Loss Rates on the Eastern Front during World War II.” Mr. Zetterling does his German research directly from the Captured German Military Records by purchasing the rolls of microfilm from the US National Archives. He is using the same German data sources that we are. Let me attempt to address his comments section by section:

The Database on Italy 1943-44:

Unfortunately, the Italian combat data was one of the early HERO research projects, with the results first published in 1971. I do not know who worked on it nor the specifics of how it was done. There are references to the Captured German Records, but significantly, they only reference division files for these battles. While I have not had the time to review Prof. Zetterling‘s review of the original research. I do know that some of our researchers have complained about parts of the Italian data. From what I’ve seen, it looks like the original HERO researchers didn’t look into the Corps and Army files, and assumed what the attached Corps artillery strengths were. Sloppy research is embarrassing, although it does occur, especially when working under severe financial constraints (for example, our Battalion-level Operations Database). If the research is sloppy or hurried, or done from secondary sources, then hopefully the errors are random, and will effectively counterbalance each other, and not change the results of the analysis. If the errors are all in one direction, then this will produce a biased result.

I have no basis to believe that Prof. Zetterling’s criticism is wrong, and do have many reasons to believe that it is correct. Until l can take the time to go through the Corps and Army files, I intend to operate under the assumption that Prof. Zetterling’s corrections are good. At some point I will need to go back through the Italian Campaign data and correct it and update the Land Warfare Database. I did compare Prof. Zetterling‘s list of battles with what was declared to be the forces involved in the battle (according to the Combat Data Subscription Service) and they show the following attached artillery:

It is clear that the battles were based on the assumption that here was Corps-level German artillery. A strength comparison between the two sides is displayed in the chart on the next page.

The Result Formula:

CEV is calculated from three factors. Therefore a consistent 20% error in casualties will result in something less than a 20% error in CEV. The mission effectiveness factor is indeed very “fuzzy,” and these is simply no systematic method or guidance in its application. Sometimes, it is not based upon the assigned mission of the unit, but its perceived mission based upon the analyst’s interpretation. But, while l have the same problems with the mission accomplishment scores as Mr. Zetterling, I do not have a good replacement. Considering the nature of warfare, I would hate to create CEVs without it. Of course, Trevor Dupuy was experimenting with creating CEVs just from casualty effectiveness, and by averaging his two CEV scores (CEVt and CEVI) he heavily weighted the CEV calculation for the TNDM towards measuring primarily casualty effectiveness (see the article in issue 5 of the Newsletter, “Numerical Adjustment of CEV Results: Averages and Means“). At this point, I would like to produce a new, single formula for CEV to replace the current two and its averaging methodology. I am open to suggestions for this.

Supply Situation:

The different ammunition usage rate of the German and US Armies is one of the reasons why adding a logistics module is high on my list of model corrections. This was discussed in Issue 2 of the Newsletter, “Developing a Logistics Model for the TNDM.” As Mr. Zetterling points out, “It is unlikely that an increase in artillery ammunition expenditure will result in a proportional increase in combat power. Rather it is more likely that there is some kind of diminished return with increased expenditure.” This parallels what l expressed in point 12 of that article: “It is suspected that this increase [in OLIs] will not be linear.”

The CEV does include “logistics.” So in effect, if one had a good logistics module, the difference in logistics would be accounted for, and the Germans (after logistics is taken into account) may indeed have a higher CEV.

General Problems with Non-Divisional Units Tooth-to-Tail Ratio

Point taken. The engagements used to test the TNDM have been gathered over a period of over 25 years, by different researchers and controlled by different management. What is counted when and where does change from one group of engagements to the next. While l do think this has not had a significant result on the model outcomes, it is “sloppy” and needs to be addressed.

The Effects of Defensive Posture

This is a very good point. If the budget was available, my first step in “redesigning” the TNDM would be to try to measure the effects of terrain on combat through the use of a large LWDB-type database and regression analysis. I have always felt that with enough engagements, one could produce reliable values for these figures based upon something other than judgement. Prof. Zetterling’s proposed methodology is also a good approach, easier to do, and more likely to get a conclusive result. I intend to add this to my list of model improvements.

Conclusions

There is one other problem with the Italian data that Prof. Zetterling did not address. This was that the Germans and the Allies had different reporting systems for casualties. Quite simply, the Germans did not report as casualties those people who were lightly wounded and treated and returned to duty from the divisional aid station. The United States and England did. This shows up when one compares the wounded to killed ratios of the various armies, with the Germans usually having in the range of 3 to 4 wounded for every one killed, while the allies tend to have 4 to 5 wounded for every one killed. Basically, when comparing the two reports, the Germans “undercount” their casualties by around 17 to 20%. Therefore, one probably needs to use a multiplier of 20 to 25% to match the two casualty systems. This was not taken into account in any the work HERO did.

Because Trevor Dupuy used three factors for measuring his CEV, this error certainly resulted in a slightly higher CEV for the Germans than should have been the case, but not a 20% increase. As Prof. Zetterling points out, the correction of the count of artillery pieces should result in a higher CEV than Col. Dupuy calculated. Finally, if Col. Dupuy overrated the value of defensive terrain, then this may result in the German CEV being slightly lower.

As you may have noted in my list of improvements (Issue 2, “Planned Improvements to the TNDM”), I did list “revalidating” to the QJM Database. [NOTE: a summary of the QJM/TNDM validation efforts can be found here.] As part of that revalidation process, we would need to review the data used in the validation data base first, account for the casualty differences in the reporting systems, and determine if the model indeed overrates the effect of terrain on defense.

Stanley Cup Playoffs Odds II

Instead of blogging about quantitative analysis of warfare….I have been watching hockey. Sorry.

When I blogged about this last time, the Washington Capitals has won the first two games of the seven-game series. One of the commentators states that only twice in the last 41 years (or cases) has a team won the third series of the play-offs after loosing the first two games. So, historically, in only 4.878% (say 5%) of the cases has someone come back from loosing the first two play-off games to win. I then calculated that if the teams were even, then the odds of Tampa Bay winning 4 of the next 5 games was .09375 or 9%.

Stanley Cup Play-off Odds

Well….it turned into a dramatic series, for after the Capitals won the first two games, they then lost the next three. The Capitals had to win the next two games after that (odds are 25% if the two teams are even in ability). They did, winning the series 4-3.

So, were the two teams even? I actually don’t think so. The Capitals won 4-3 (making the argument that they were 57-to-43). On the other hand, over the course of 7 games the Capitals scored 23 goals to Tampa Bays’ 15. Particularly telling is that Tampa Bay was shut out in the last two games (meaning they did not score). So, 23/38 makes the case for the comparison to be 61-to-39. But particularly telling was that the Capitals out shot (made more shots on the goal) than Tampa Bay in all but the last game (32-21, 37-35, 38-23, 38-19, 30-22, 33-24, 22-29). So total shot count was 230-173…so 57-to-43.

Now there is a whole lot more going on in a hockey game than just shots on goals and scoring, which is why we watch. But….it does appear that the Capitals were the better team and, after the fact, we may be able to say that they had a 57% chance of winning each game. Now, if I could figure out the odds before the series….I could make a lot of money in Vegas!

Degrees of Bacon

For those who have not examined the Oracle of Bacon…check this site: http://oracleofbacon.org/help.php

It clearly establishes that if you are working in an industry or field (like in Hollywood), it is hard not to know someone who knows someone who knows someone who knows someone.

Anyhow, a Cambridge University professor named Stefan Halper is now in the news, involved in the latest twist to the Russian investigation: Who is Stefan A. Halper?

I have never heard of him before, but it turns out he was a contractor to Office of Net Assessment (ONA) from 2012-2016. We did a number of contracts for Andy Marshall’s shop, although the last one was in 2008. See: Andrew Marshall

He also turns out to have married Ray S. Cline’s daughter. Trevor Dupuy knew Ray Cline and published one of his books in 1986 through Hero Books. I met him once, when I was trying to put together a far ranging proposal on East Asia for Net Assessment. See: Terrorism as State Sponsored Covert Warfare. This book is out of print.

Anyhow, this is the nature of living and working in the Washington DC area. On the other hand, my favorite barber knows even more of the people we see on the news.

CEV Calculations in Italy, 1943

Tip of the Avalanche by Keith Rocco. Soldiers from the U.S. 36th Infantry Division landing at Salerno, Italy, September 1943.

[The article below is reprinted from June 1997 edition of The International TNDM Newsletter. Chris Lawrence’s response from the August 1997 edition of The International TNDM Newsletter will be posted on Friday.]

CEV Calculations in Italy, 1943
by Niklas Zetterling

Perhaps one of the most debated results of the TNDM (and its predecessors) is the conclusion that the German ground forces on average enjoyed a measurable qualitative superiority over its US and British opponents. This was largely the result of calculations on situations in Italy in 1943-44, even though further engagements have been added since the results were first presented. The calculated German superiority over the Red Army, despite the much smaller number of engagements, has not aroused as much opposition. Similarly, the calculated Israeli effectiveness superiority over its enemies seems to have surprised few.

However, there are objections to the calculations on the engagements in Italy 1943. These concern primarily the database, but there are also some questions to be raised against the way some of the calculations have been made, which may possibly have consequences for the TNDM.

Here it is suggested that the German CEV [combat effectiveness value] superiority was higher than originally calculated. There are a number of flaws in the original calculations, each of which will be discussed separately below. With the exception of one issue, all of them, if corrected, tend to give a higher German CEV.

The Database on Italy 1943-44

According to the database the German divisions had considerable fire support from GHQ artillery units. This is the only possible conclusion from the fact that several pieces of the types 15cm gun, 17cm gun, 21cm gun, and 15cm and 21cm Nebelwerfer are included in the data for individual engagements. These types of guns were almost exclusively confined to GHQ units. An example from the database are the three engagements Port of Salerno, Amphitheater, and Sele-Calore Corridor. These take place simultaneously (9-11 September 1943) with the German 16th Pz Div on the Axis side in all of them (no other division is included in the battles). Judging from the manpower figures, it seems to have been assumed that the division participated with one quarter of its strength in each of the two former battles and half its strength in the latter. According to the database, the number of guns were:

15cm gun 28
17cm gun 12
21cm gun 12
15cm NbW 27
21cm NbW 21

This would indicate that the 16th Pz Div was supported by the equivalent of more than five non-divisional artillery battalions. For the German army this is a suspiciously high number, usually there were rather something like one GHQ artillery battalion for each division, or even less. Research in the German Military Archives confirmed that the number of GHQ artillery units was far less than indicated in the HERO database. Among the useful documents found were a map showing the dispositions of 10th Army artillery units. This showed clearly that there was only one non-divisional artillery unit south of Rome at the time of the Salerno landings, the III/71 Nebelwerfer Battalion. Also the 557th Artillery Battalion (17cm gun) was present, it was included in the artillery regiment (33rd Artillery Regiment) of 15th Panzergrenadier Division during the second half of 1943. Thus the number of German artillery pieces in these engagements is exaggerated to an extent that cannot be considered insignificant. Since OLI values for artillery usually constitute a significant share of the total OLI of a force in the TNDM, errors in artillery strength cannot be dismissed easily.

While the example above is but one, further archival research has shown that the same kind of error occurs in all the engagements in September and October 1943. It has not been possible to check the engagements later during 1943, but a pattern can be recognized. The ratio between the numbers of various types of GHQ artillery pieces does not change much from battle to battle. It seems that when the database was developed, the researchers worked with the assumption that the German corps and army organizations had organic artillery, and this assumption may have been used as a “rule of thumb.” This is wrong, however; only artillery staffs, command and control units were included in the corps and army organizations, not firing units. Consequently we have a systematic error, which cannot be corrected without changing the contents of the database. It is worth emphasizing that we are discussing an exaggeration of German artillery strength of about 100%, which certainly is significant. Comparing the available archival records with the database also reveals errors in numbers of tanks and antitank guns, but these are much smaller than the errors in artillery strength. Again these errors do always inflate the German strength in those engagements l have been able to check against archival records. These errors tend to inflate German numerical strength, which of course affects CEV calculations. But there are further objections to the CEV calculations.

The Result Formula

The “result formula” weighs together three factors: casualties inflicted, distance advanced, and mission accomplishment. It seems that the first two do not raise many objections, even though the relative weight of them may always be subject to argumentation.

The third factor, mission accomplishment, is more dubious however. At first glance it may seem to be natural to include such a factor. Alter all, a combat unit is supposed to accomplish the missions given to it. However, whether a unit accomplishes its mission or not depends both on its own qualities as well as the realism of the mission assigned. Thus the mission accomplishment factor may reflect the qualities of the combat unit as well as the higher HQs and the general strategic situation. As an example, the Rapido crossing by the U.S. 36th Infantry Division can serve. The division did not accomplish its mission, but whether the mission was realistic, given the circumstances, is dubious. Similarly many German units did probably, in many situations, receive unrealistic missions, particularly during the last two years of the war (when most of the engagements in the database were fought). A more extreme example of situations in which unrealistic missions were given is the battle in Belorussia, June-July 1944, where German units were regularly given impossible missions. Possibly it is a general trend that the side which is fighting at a strategic disadvantage is more prone to give its combat units unrealistic missions.

On the other hand it is quite clear that the mission assigned may well affect both the casualty rates and advance rates. If, for example, the defender has a withdrawal mission, advance may become higher than if the mission was to defend resolutely. This must however not necessarily be handled by including a missions factor in a result formula.

I have made some tentative runs with the TNDM, testing with various CEV values to see which value produced an outcome in terms of casualties and ground gained as near as possible to the historical result. The results of these runs are very preliminary, but the tendency is that higher German CEVs produce more historical outcomes, particularly concerning combat.

Supply Situation

According to scattered information available in published literature, the U.S. artillery fired more shells per day per gun than did German artillery. In Normandy, US 155mm M1 howitzers fired 28.4 rounds per day during July, while August showed slightly lower consumption, 18 rounds per day. For the 105mm M2 howitzer the corresponding figures were 40.8 and 27.4. This can be compared to a German OKH study which, based on the experiences in Russia 1941-43, suggested that consumption of 105mm howitzer ammunition was about 13-22 rounds per gun per day, depending on the strength of the opposition encountered. For the 150mm howitzer the figures were 12-15.

While these figures should not be taken too seriously, as they are not from primary sources and they do also reflect the conditions in different theaters, they do at least indicate that it cannot be taken for granted that ammunition expenditure is proportional to the number of gun barrels. In fact there also exist further indications that Allied ammunition expenditure was greater than the German. Several German reports from Normandy indicate that they were astonished by the Allied ammunition expenditure.

It is unlikely that an increase in artillery ammunition expenditure will result in a proportional increase combat power. Rather it is more likely that there is some kind of diminished return with increased expenditure.

General Problems with Non-Divisional Units

A division usually (but not necessarily) includes various support services, such as maintenance, supply, and medical services. Non-divisional combat units have to a greater extent to rely on corps and army for such support. This makes it complicated to include such units, since when entering, for example, the manpower strength and truck strength in the TNDM, it is difficult to assess their contribution to the overall numbers.

Furthermore, the amount of such forces is not equal on the German and Allied sides. In general the Allied divisional slice was far greater than the German. In Normandy the US forces on 25 July 1944 had 812,000 men on the Continent, while the number of divisions was 18 (including the 5th Armored, which was in the process of landing on the 25th). This gives a divisional slice of 45,000 men. By comparison the German 7th Army mustered 16 divisions and 231,000 men on 1 June 1944, giving a slice of 14,437 men per division. The main explanation for the difference is the non-divisional combat units and the logistical organization to support them. In general, non-divisional combat units are composed of powerful, but supply-consuming, types like armor, artillery, antitank and antiaircraft. Thus their contribution to combat power and strain on the logistical apparatus is considerable. However I do not believe that the supporting units’ manpower and vehicles have been included in TNDM calculations.

There are however further problems with non-divisional units. While the whereabouts of tank and tank destroyer units can usually be established with sufficient certainty, artillery can be much harder to pin down to a specific division engagement. This is of course a greater problem when the geographical extent of a battle is small.

Tooth-to-Tail Ratio

Above was discussed the lack of support units in non-divisional combat units. One effect of this is to create a force with more OLI per man. This is the result of the unit‘s “tail” belonging to some other part of the military organization.

In the TNDM there is a mobility formula, which tends to favor units with many weapons and vehicles compared to the number of men. This became apparent when I was performing a great number of TNDM runs on engagements between Swedish brigades and Soviet regiments. The Soviet regiments usually contained rather few men, but still had many AFVs, artillery tubes, AT weapons, etc. The Mobility Formula in TNDM favors such units. However, I do not think this reflects any phenomenon in the real world. The Soviet penchant for lean combat units, with supply, maintenance, and other services provided by higher echelons, is not a more effective solution in general, but perhaps better suited to the particular constraints they were experiencing when forming units, training men, etc. In effect these services were existing in the Soviet army too, but formally not with the combat units.

This problem is to some extent reminiscent to how density is calculated (a problem discussed by Chris Lawrence in a recent issue of the Newsletter). It is comparatively easy to define the frontal limit of the deployment area of force, and it is relatively easy to define the lateral limits too. It is, however, much more difficult to say where the rear limit of a force is located.

When entering forces in the TNDM a rear limit is, perhaps unintentionally, drawn. But if the combat unit includes support units, the rear limit is pushed farther back compared to a force whose combat units are well separated from support units.

To what extent this affects the CEV calculations is unclear. Using the original database values, the German forces are perhaps given too high combat strength when the great number of GHQ artillery units is included. On the other hand, if the GHQ artillery units are not included, the opposite may be true.

The Effects of Defensive Posture

The posture factors are difficult to analyze, since they alone do not portray the advantages of defensive position. Such effects are also included in terrain factors.

It seems that the numerical values for these factors were assigned on the basis of professional judgement. However, when the QJM was developed, it seems that the developers did not assume the German CEV superiority. Rather, the German CEV superiority seems to have been discovered later. It is possible that the professional judgement was about as wrong on the issue of posture effects as they were on CEV. Since the British and American forces were predominantly on the offensive, while the Germans mainly defended themselves, a German CEV superiority may, at least partly, be hidden in two high effects for defensive posture.

When using corrected input data on the 20 situations in Italy September-October 1943, there is a tendency that the German CEV is higher when they attack. Such a tendency is also discernible in the engagements presented in Hitler’s Last Gamble. Appendix H, even though the number of engagements in the latter case is very small.

As it stands now this is not really more than a hypothesis, since it will take an analysis of a greater number of engagements to confirm it. However, if such an analysis is done, it must be done using several sets of data. German and Allied attacks must be analyzed separately, and preferably the data would be separated further into sets for each relevant terrain type. Since the effects of the defensive posture are intertwined with terrain factors, it is very much possible that the factors may be correct for certain terrain types, while they are wrong for others. It may also be that the factors can be different for various opponents (due to differences in training, doctrine, etc.). It is also possible that the factors are different if the forces are predominantly composed of armor units or mainly of infantry.

One further problem with the effects of defensive position is that it is probably strongly affected by the density of forces. It is likely that the main effect of the density of forces is the inability to use effectively all the forces involved. Thus it may be that this factor will not influence the outcome except when the density is comparatively high. However, what can be regarded as “high” is probably much dependent on terrain, road net quality, and the cross-country mobility of the forces.

Conclusions

While the TNDM has been criticized here, it is also fitting to praise the model. The very fact that it can be criticized in this way is a testimony to its openness. In a sense a model is also a theory, and to use Popperian terminology, the TNDM is also very testable.

It should also be emphasized that the greatest errors are probably those in the database. As previously stated, I can only conclude safely that the data on the engagements in Italy in 1943 are wrong; later engagements have not yet been checked against archival documents. Overall the errors do not represent a dramatic change in the CEV values. Rather, the Germans seem to have (in Italy 1943) a superiority on the order of 1.4-1.5, compared to an original figure of 1.2-1.3.

During September and October 1943, almost all the German divisions in southern Italy were mechanized or parachute divisions. This may have contributed to a higher German CEV. Thus it is not certain that the conclusions arrived at here are valid for German forces in general, even though this factor should not be exaggerated, since many of the German divisions in Italy were either newly raised (e.g., 26th Panzer Division) or rebuilt after the Stalingrad disaster (16th Panzer Division plus 3rd and 29th Panzergrenadier Divisions) or the Tunisian debacle (15th Panzergrenadier Division).

Pompeo’s 12 Demands for Iran

U.S. Secretary of State Mike Pompeo outlined 12 basic requirements for a new agreement with Iran on nuclear and regional issues:

  • 1. Iran must provide a complete account of its previous nuclear-weapons research.
  • 2. Iran must stop uranium enrichment and never pursue plutonium reprocessing.
  • 3. Iran must provide the International Atomic Energy Agency “unqualified access” to all sites in the country.
  • 4. Iran must stop providing missiles to militant groups and halt the development of nuclear-capable missiles.
  • 5. Iran must release all U.S. and allied detainees.
  • 6. Iran must stop supporting militant groups, including Hezbollah, Hamas and Palestinian Islamic Jihad.
  • 7. Iran must respect Iraqi sovereignty and permit the demobilization of the Shiite militias it has backed there.
  • 8. Iran must stop sending arms to the Houthis and work for a peaceful settlement in Yemen.
  • 9. Iran must withdraw all forces under its command from Syria.
  • 10. Iran must end support for the Taliban and stop harboring al Qaeda militants.
  • 11. Iran must end support by its paramilitary Quds Force for militant groups.
  • 12. Iran must end its threats to destroy Israel and stop threatening international ships. It must end cyberattacks and stop proxies from firing missiles into Saudi Arabia and the United Arab Emirates.

Source: https://www.wsj.com/articles/mike-pompeo-lays-out-next-steps-on-iran-1526909126

I doubt that Iran is going to fulfill all these demands without a regime change.

 

Air Combat And Technology

Any model of air combat needs to address the effect of weapons on the opposing forces.  In the Dupuy Air Combat Model (DACM), this was rifled bullets fired from machine guns, as well as small caliber cannon in the 20-30 millimeter (mm) class.  Such was the state of air combat in World War II.  This page is an excellent, in-depth analysis of the fighter guns and cannon.  Of course, technology has effects beyond firepower.  One of the most notable technologies to go into active use during World War II was radar, contributing to the effectiveness of the Royal Air Force (RAF), successfully holding off the Wehrmacht’s Luftwaffe in the Battle of Britain.

Since that time, driven by “great power competition”, technology continues to advance the art of warfare in the air.  This happened in several notable stages during the Cold War, and was on display in subsequent contemporary conflicts when client or proxy states fought on behalf of the great powers.  Examples include well-known conflicts, such as the Korean and Vietnam conflicts, but also the conflicts between the Arabs and Israelis.  In the Korean War, archives now illustrate than Russian pilots secretly flew alongside North Korean and Chinese pilots against the allied forces.

Stages in technology are often characterized by generation.  Many of the features that are associated with the generations are driven by the Cold War arms race, and the back and forth development cycles and innovation cycles by the aircraft designers.  This was evident in comments by Aviation Week’s Bill Sweetman, remarking that the Jas-39 Grippen is actually a sixth generation fighter, based upon the alternative focus on maintainability, operability from short runways / austere airbases (or roadways!), the focus on cost reduction, but most importantly, software: “The reason that the JAS 39E may earn a Gen 6 tag is that it has been designed with these issues in mind. Software comes first: The new hardware runs Mission System 21 software, the latest roughly biennial release in the series that started with the JAS 39A/B.”

Upon close inspection of the DACM parameters, we can observe a few important data elements and metadata definitions: avionics (aka software & hardware), and sensor performance.  Those two are about data and information.  A concise method to assign values to these parameters is needed.  The U.S. Air Force (USAF) Air Combat Command (ACC) has used the generation of fighters as a proxy for this in the past, at least at a notional level:

[Source: 5th Generation Fighters, Lt Gen Hawk Carlisle, USAF ACC]

The Fleet Series game that has been reviewed in previous posts has a different method.  The Air-to-Air Combat Resolution Table does not seem to resonate well, as the damage effects are imposed against either one side or the other.  This does not jive with the stated concerns of the USAF, which has been worried about an exchange in which both Red and Blue forces are destroyed or eliminated in a mutual fashion, with a more or less one-for-one exchange ratio.

The Beyond Visual Range (BVR) version, named Long Range Air-to-Air (LRAA) combat in Asian Fleet, is a better model of this, in which each side rolls a die to determine the effect of long range missiles, and each side may take losses on non-stealthy units, as the stealthy units are immune to damage at BVR.

One important factor that the Fleet Series combat process does resolve is a solid determination of which side “holds” the airspace, and this is capable of using other support aircraft, such as AWACS, tankers, reconnaissance, etc.  Part of this determination is the relative morale of the opposing forces.  These effects have been clearly evident in air campaigns such as the strategic bombing campaign on Germany and Japan in the latter portion of World War II.

Dealing with this conundrum, I decided to relax by watching some dogfight videos on YouTube, Dogfights Greatest Air Battles, and this was rather entertaining, it included a series of engagements in aerial combat, taken from the exploits of American aces over the course of major wars:

  1. Eddie Rickenbacker, flying a Spad 13 in World War I,
  2. Clarence Emil “Bud” Anderson, flying a P-51B “Old Crow” in European skies during World War II, flying 67 missions in P-51Ds, 35 missions in F-80s and 121 missions in F-86s. He wrote “No Guts, No Glory,” a how to manual with lots of graphics of named maneuvers like the “Scissors.”
  3. Frederick Corbin “Boots” Blesse, flying a F-86 Sabre in “MiG Alley” in North Korea close to the Chinese border,
  4. Several engagements and interviews of aces from the Vietnam War:
    1. Steve Ritchie, who said “Surprise is a key element.” Previously discussed.
    2. Robin Olds – a triple ace in both WWII (P-38 and P-51) and Vietnam (F-4), and the mastermind of Operation Bolo, a fantastic application of deception.
    3. Randy “Duke” Cunningham and William P “Irish” Discol, flying an F-4 Phantom, “Showtime 100”, and up against North Vietnamese MiG-17s.

An interesting paraphrase by Cunningham of Manfred von Richthofen, the Red Baron’s statement: “When he sees the enemy, he attacks and kills, everything else is rubbish.”  What Richthofen said (according to skygod.com), was “The duty of the fighter pilot is to patrol his area of the sky, and shoot down any enemy fighters in that area. Anything else is rubbish.” Richtofen would not let members of his Staffel strafe troops in the trenches.

The list above is a great reference, and it got me to consider an alternative form of generation, including the earlier wars, and the experiences gained in those wars.  Indeed, we can press on in time to include the combat performance of the US and Allied militaries in the first Gulf War, 1990, as previously discussed.

There was a reference to the principles of aerial combat, such as the Dicta Boelcke:

  1. Secure the benefits of aerial combat (speed, altitude, numerical superiority, position) before attacking. Always attack from the sun.
  2. If you start the attack, bring it to an end.
  3. Fire the machine gun up close and only if you are sure to target your opponent.
  4. Do not lose sight of the enemy.
  5. In any form of attack, an approach to the opponent from behind is required.
  6. If the enemy attacks you in a dive, do not try to dodge the attack, but turn to the attacker.
  7. If you are above the enemy lines, always keep your own retreat in mind.
  8. For squadrons: In principle attack only in groups of four to six. If the fight breaks up in noisy single battles, make sure that not many comrades pounce on an opponent.

Appendix A – my own attempt to classify the generations of jet aircraft, in an attempt to rationalize the numerous schemes … until I decided that it was a fool’s errand:

  • Generation Zero:
    • World War II, 1948 Arab Israeli conflict
    • Blue: Spitfire, P-51 Mustang,
    • Red: Bf-109, FW-190, Mitsubishi Zero/George
    • Propeller engines, machine guns & cannons
  • First Generation:
    • Korean War, China & Taiwan conflicts
    • Blue: F-86 Sabre,
    • Red: MiG-15, Me-262?
    • Jet engines, swept wings, machine guns & cannons, early air-to-air missiles
  • Second Generation –
    • 1967 and Cuban Missile Crisis
    • Blue: F-100, F-102, F-104, F-5, F-8
    • Grey: Mirage III, Mirage F1
    • Red: MiG-19, MiG-21
    • Multi-mach speeds, improved air-to-air missiles, but largely within-visual range (WVR), early radar warning receivers (RWR), early countermeasures.
  • Third Generation:
    • 1973 Arab Israeli Wars, Vietnam War
    • Blue: F-4 Phantom, F-111 Ardvark, F-106?
    • Grey: Mirage III
    • Red: MiG-23, MiG-25, Su-15
    • Look-down/Shoot-down capability, radar-guided missiles, Beyond Visual Range (BVR), Identification Friend or Foe (IFF), all-aspect infrared missiles.
  • Fourth Generation:
    • 1980’s Cold War, 1990 Gulf War, 1982 Lebanon, 1980-88 Iran-Iraq War
    • Blue: F-15 Eagle, F-16 Viper, F-14 Tomcat, F/A-18 Hornet
    • Grey: Mirage 2000
    • Red: MiG-29, MiG-31, Su-27/30
  • Fourth Plus Generation:
    • 2003 Gulf War, 2011 Libiya
    • Blue: F/A-18E/F Super Hornet, F-15 improved (F-15E, F-15I, F-15SG, F-15SK…)
    • Grey: Eurofighter Typhoon, Rafale
    • Red: Su-35S
  • Fifth Generation:
    • Marketing term used by aircraft producers
    • Blue: Adanced Tactical Fighter (ATF) = F-22 Raptor, Joint Strike Fighter (JSF) = F-35 Lightening II
    • Grey: Grippen?
    • Red: PAK-FA Su-57, J-20
  • Sixth Generation – the current frontier
    • Blue: Next Generation Air Dominance (NGAD) program, UAS ?
    • Red: ?
    • Grey: Two seat, Twin tail “drone-herder”?

The Third World War of 1985

Hackett

[This article was originally posted on 5 August 2016]

The seeming military resurgence of Vladimir Putin’s Russia has renewed concerns about the military balance between East and West in Europe. These concerns have evoked memories of the decades-long Cold War confrontation between NATO and the Warsaw Pact along the inner-German frontier. One of the most popular expressions of this conflict came in the form of a book titled The Third World War: August 1985, by British General Sir John Hackett. The book, a hypothetical account of a war between the Soviet Union, the United States, and assorted allies set in the near future, became an international best-seller.

Jeffrey H Michaels, a Senior Lecturer in Defence Studies at the British the Joint Services Command and Staff College, has published a detailed look at how Hackett and several senior NATO and diplomatic colleagues constructed the scenario portrayed in the book. Scenario construction is an important aspect of institutional war gaming. A war game will only be as useful if the assumptions that underpin it are valid. As Michaels points out,

Regrettably, far too many scenarios and models, whether developed by military organizations, political scientists, or fiction writers, tend to focus their attention on the battlefield and the clash of armies, navies, air forces, and especially their weapons systems.  By contrast, the broader context of the war – the reasons why hostilities erupted, the political and military objectives, the limits placed on military action, and so on – are given much less serious attention, often because they are viewed by the script-writers as a distraction from the main activity that occurs on the battlefield.

Modelers and war gamers always need to keep in mind the fundamental importance of context in designing their simulations.

It is quite easy to project how one weapon system might fare against another, but taken out of a broader strategic context, such a projection is practically meaningless (apart from its marketing value), or worse, misleading.  In this sense, even if less entertaining or exciting, the degree of realism of the political aspects of the scenario, particularly policymakers’ rationality and cost-benefit calculus, and the key decisions that are taken about going to war, the objectives being sought, the limits placed on military action, and the willingness to incur the risks of escalation, should receive more critical attention than the purely battlefield dimensions of the future conflict.

These are crucially important points to consider when deciding how to asses the outcomes of hypothetical scenarios.